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INTRODUCTION

There is by now extensive literature addressing the problem of time in classical 

and quantum gravity (e.g. Kuchař „s review).

The heart of the problem lies in the fact that Einstein‟s theory is a totally

constrained system whose Hamiltonian vanishes, and since observable quantities 

are those that commute with the constraints (Dirac Observables) they 

therefore do not evolve. 

We will discuss here two approaches to this problem. 

Both have in common their relational character. In fact, one of the basic ingredients in 

the different proposals to describe evolution is the use of relations between 

different degrees of freedom in the theory .

▪ Evolving Dirac observables. (Bergmann, DeWitt, Rovelli, Marolf…) 

▪ Conditional probabilities approach proposed by Page and Wootters. 



We will see that both approaches present problems and do not provide a 

completely satisfactory solution to the issue of the evolution. 

Problems are particularly acute when we try to compute propagators or assign 

probabilities to histories. 

We will show that a combination of both approaches addresses most of the 

issues mentioned above.



1) Evolving Dirac Observables in totally constrained systems:
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In the case of GR the constraints are first class
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The Hamiltonian vanishes: the

generator of the evolution also 

generates gauge transformations

Dirac observables are gauge invariant quantities
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Therefore, they are constants of the motion.



The issue of time: If the physically relevant quantities in 

totally constrained systems as general relativity are constants

of the motion, how can we describe the evolution?

b) Evolving Dirac observables: Bergmann, DeWitt, Rovelli, Marolf …
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For instance,  for the relativistic particle.

Two independent observables:

Notice that one needs to assume 

that there are variables as  q0 that are physically 

observable, even though they are not Dirac observables

a) Gauge fixing: ),,( pqf
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Great example: ADM.



The Quantum Evolving Observables.

It is now possible to introduce an inner product in the space of solutions of the constraint

and define  Hphys)
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with self-adjoint  Dirac observables
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And eigenvectors 

(which solve the constraint as well)

Let us consider the elementary case of a non-relativistic free particle



Summarizing, the choice of clock variable               leads to the standard 

form of the quantum free particle in the Heisenberg representation. 

In particular, the transition amplitude is:
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This choice of clock variable for the non-relativistic particle is unique, 

up to reparameterizations. Any other choice leads to evolving Dirac Observables 

that cannot  be promoted to self-adjoint operators.
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that is not self-adjoint due to the momentum in the denominator.

For instance if one takes the position as a clock variable: T=x, it leads to 

an evolving observable: 



If the classical Dirac observable can be promoted to a self-adjoint  operator in  Hphys ,

one can show that there is an operator, U(T),  such that  the evolution in the 

c-number parameter T  is unitary. The requirement  that the evolving observables  be

self-adjoint  is very restrictive in any totally constrained system and  imposes strong 

limitations on the type of clocks that can be used at the quantum level.

In any generally covariant system as general relativity the clock will be associated 

to certain physical sub-system with dynamical variables that will not be well defined

in  Hphys . We don‟t have any external variable.
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The issue of the parameter T

Evolving observables depend on a real parameter T.  That is we are assuming that 

there is an external quantity T , that is not represent by any quantum operator 

nor  belongs to any physical Hilbert space.

One may wonder about the meaning of the condition               in the generic situation 

in which the clock variable         is not defined in 
0q physH

Tq0



Evolving constants are measurable quantities but, in the quantum realm, 

they depend on an external parameter, whose observation is not described 

by the theory.

2) Conditional probabilities.

The second alternative we want to consider is a description of the evolution in 

terms of conditional probabilities.

The idea is that one promotes all variables to quantum operators and computes

conditional probabilities among them. This idea appears simple, natural and 

attractive in a closed system.

Unfortunately one runs into problems due to the totally constrained nature of

gravity. Which variables to promote? Dirac observables? Page and Wootters

proposed using kinematical variables, not Dirac observables. That way they

had some form of evolution.    Phys.Rev.D27:2885,(1983)

Marolf in a very interesting paper  has recently presented 

an implementation of the evolving Dirac observables. We consider however 

that the issue of the external parameter is still present in this implementation.

Phys.Rev.D79:084016,2009 gr-qc/0902.155



A few years ago the idea also received  attention by Dolby who proposed a new 

approach to  the issue of the definition of conditional probabilities. gr-qc/0406034

Hellmann, Mondragon Perez and Rovelli  Phys.Rev.D75:084033,(2007) analyzed 

the issue of the definition of probabilities for sequences of measurements 

proposed by Dolby and concluded that they present interpretational problems, 

and that it is not clear to what measurement setup does these probabilities correspond. 

Kuchař in his review on the problem of time, noted that this  procedure faces important 

difficulties, in particular it does  not lead to the  correct propagators in model systems. 

The root of the problem is the distributional nature of physical states and the attempt

to compute expectation values of kinematical quantities with them.

Very recently, Brunetti, Fredenhagen and Hoge have formalized the Page and 

Wootters construction, in particular the use of distributional states in the kinematical 

space. At the moment it is unclear if this solves the propagator issue. arXiv:0909.1899

Other attempts:



3) Conditional probabilities in terms of evolving Dirac observables.

As we have seen, both approaches require the use of variables which are not

defined in the physical space. 

Here we will elaborate upon a different approach where all reference 

to external parameters is abolished, and evolving constants are used to define 

correlations between Dirac observables in the theory.



We propose to revisit the Page-Wootters construction  by computing 

relational probabilities among evolving Dirac observables. The latter are well

defined on the physical space of states of the theory and are quantities that one

can expect  to observe and to be represented by well defined self-adjoint 

quantum operators.

First you choose an evolving observable as your clock, let us call it T(t) .

Then one identifies the set of observables O1(t)…ON(t)   that commute with T 

and describes the physical system whose evolution one wants to study and computes

Notice that we have changed the notation and the external parameter is now called t.

In other words, t is the parameter associated to the variable used to define the 

evolving observables. This variable is treated as an ideal quantity that we do not

need to observe.



A simple example.

One considers the constrained system:
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We have two free particles and one can define:
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We are using  q0 as unobservable 

parameter

What does such a probability represent?

The experimental setup we have in mind is to consider an ensamble of 

non-interacting systems with two quantum variables each to be measured. 

Each systems is equipped with a recording device that takes a single snapshot of 

O and T at a “random” unknown value of the “ideal” time t. One takes a large 

number of such systems, launches them all in the same quantum state,  

“waits for a long time” and concludes the experiment. 

From here one can immediately compute frequencies and the joint probability 

in the limit of infinite systems.



Notice that in particular no assumption about the relative ordering 

of the unobservable variables t and t’ is needed.  

One can show that this expression yields the correct propagator. In 

the example of the previous slide:

We can then write the conditional probabilities that yield the propagators,
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This expression yields the propagator for the system to move from



Let us come back to the previous result
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This probability will be controlled by the position of the peak and the width of 

the wave packet of the particle 1. If were a Dirac delta we would recover

the exact ordinary non-relativistic propagator.
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Real clocks and loss of unitarity.
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dttxP And            can be interpreted as the probability that the external

unobservable time  is   t’ when the variable taken as a clock

reads      
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The use of real clocks may lead to a loss of quantum coherence and therefore to 

corrections to the standard propagator.



We have therefore ended with the standard probability expression with an

“effective'' density matrix in the Schrödinger picture given by   (T)

Unitarity may be lost since one ends up with a density matrix that is a 

superposition of density matrices associated with different values of t

The underlying unitary evolution of the evolving constants in the ideal time t is crucial, 

yet unobservable. All we observe are the correlations in physical time, then it is 

not surprising  that  they present a fundamental level of loss of coherence due to the 

Intrinsically limitations of real clocks.

If we assume the “real clock'' is behaving semi-classically. 
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The Schrödinger evolution is modified: RG, R. Porto, JP, NJP 6, 45 (2004)
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If we assume σ is constant, the equation can be solved exactly and one gets that the

density matrix in an energy eigen-basis evolves as



Therefore,  the off-diagonal elements of the density matrix decay to zero exponentially, 

and pure states generically evolve into mixed states. Quantum mechanics with real 

clocks therefore does not have a unitary evolution. 

We will not enter into the analysis of these phenomenological estimations, (which have

been questioned in the literature. But it is  important to remark that the evolution with 

real clocks will not be unitary if the  spread in the error of the clock grows with time 

with some power of T.

That is, if   T=Tplanck he evolution is unitary, but if  T=TaTPlanck
1-a with a>0 there will

Exist a fundamental loss of unitarity.   

There are many phenomenological arguments based on quantum and gravitational 

considerations that lead to estimates of such a limitation, 

(Salecker-Wigner and Ng, Karolyhazy, Lloyd, Hogan, Amelino Camelia)

The effects are more pronounced the worse the clock is. Which raises the question: 

is there a fundamental limitation to how good a clock can be?



Conclusions:

• Using evolving constants of the motion in the 
conditional probability interpretation of Page 
and Wootters allows to correctly compute the 
propagator and assign probabilities to 
histories.

• The resulting description is entirely in terms of 
Dirac observables.

• There are corrections to the propagator due to 
the use of “real clocks and rods” to measure 
space and time.



Happy 50th ADM. You and 

your ideas look as young 

and vibrant as ever!


