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Lagrangians and Hamiltonians in Classical Field Theory

Lagrangian and Hamiltonian formulations of field
theories play a central role in their quantization.
However, it had been my view that their role in classical
field theory was not much more than that of a mnemonic
device to remember the field equations. When I wrote
my GR text, the discussion of the Lagrangian
(Einstein-Hilbert) and Hamiltonian (ADM) formulations
of general relativity was relegated to an appendix. My
views have changed dramatically in the past 15 years:

The existence of a Lagrangian or Hamiltonian provides

important auxiliary structure to a classical field theory,

which endows the theory with key properties.




Lagrangians and Hamiltonians in Particle Mechanics

Consider particle paths ¢(t). If L is a function of (g, ¢)

then we have the identity
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holding at each time t. L is a Lagrangian for the system

if the equations of motion are
0=F =

The “boundary term”
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O(q,q) = a_qdq = pdq




(with p = 0L/0q) is usually discarded. However, by

taking a second, antisymmetrized variation of © and

evaluating at time t,;, we obtain the quantity

(q,01q,029) = [019(q,02q) — 020(q, 019)]]+,
— [51]?5261—52]95161”750

Then () is independent of ¢, provided that the varied
paths d1¢(t) and d,q(t) satisfy the linearized equations of
motion about ¢(t). €2 is highly degenerate on the infinite
dimensional space of all paths F, but it we factor F by
the degeneracy subspaces of ), we obtain a finite
dimensional phase space I' on which €2 is non-degenerate.

A Hamaltonian, H, is a function on I' whose pullback to




F satisfies
0H = Q(q;9q,4q)

for all g provided that ¢(t) satisfies the equations of
motion. This is equivalent to saying that the equations of

motion are
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Lagrangians and Hamiltonians in Classical Field Theory

Let ¢ denote the collection of dynamical fields. The
analog of F is the space of field configurations on
spacetime. For an n-dimensional spacetime, a Lagrangian
L is most naturally viewed as an n-form on spacetime
that is a function of ¢ and finitely many of its

derivatives. Variation of L yields

5L = Eé¢ + dO

where © is an (n — 1)-form on spacetime, locally

constructed from ¢ and 0¢. The equations of motion are

then EE = 0. The symplectic current w is defined by
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and () is then defined by
06,816,620) = [ w(6,816,620
)

where X is a Cauchy surface. Phase space is constructed

by factoring field configuration space by the degeneracy

subspaces of {1, and a Hamiltonian, H¢, conjugate to a

vector field £* on spacetime is a function on phase space

whose pullback to field configuration space satisfies

0He = (00, L)




Diffeomorphism Covariant Theories

A diffeomorphism covariant theory is one whose
Lagrangian is constructed entirely from dynamical fields,
i.e., there is no “background structure” in the theory
apart from the manifold structure of spacetime. For a
diffeomorphism covariant theory for which dynamical
fields, ¢, are a metric g,, and tensor fields v, the

Lagrangian takes the form

L = L (gabs Rocdes s Viay - Van) Rocde; s s Viay - Vay) )




Noether Current and Noether Charge

For a diffeomorphism covariant theory, every vector field
£ on spacetime generates a local symmetry. We associate
to each £* and each field configuration, ¢ (not required,
at this stage, to be a solution of the equations of motion),

a Noether current (n — 1)-form, J¢, defined by

Je =0O(¢,Legp) — & - L

A simple calculation yields

dJe = —~EL¢

which shows J¢ is closed (for all £*) when the equations

of motion are satisfied. It can then be shown that for all




£% and all ¢ (not required to be a solution to the

equations of motion), we can write J¢ as

J. = ¢°C, + dQe

where C, = 0 are the constraint equations of the theory
and Q¢ is an (n — 2)-form locally constructed out of the
dynamical fields ¢, the vector field £%, and finitely many
of their derivatives. It can be shown that Q¢ can always
be expressed in the form

Q: = We(9)6° + XU9) Vel + Y (9, Le) + dZ(¢, )

Furthermore, there is some “gauge freedom” in the
choice of Q¢ arising from (i) the freedom to add an exact
form to the Lagrangian, (ii) the freedom to add an exact




form to ©, and (iii) the freedom to add an exact form to
Q¢. Using this freedom, we may choose Q¢ to take the

form

Qe = W (9)&° +X(¢)Vie&y

where
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where E%¢ = () are the equations of motion that would
result from pretending that R,,.q were an independent

dynamical field in the Lagrangian L.




Hamailtonians

Let ¢ be any solution of the equations of motion, and let
d¢ be any variation of the dynamical fields (not
necessarily satisfying the linearized equations of motion)
about ¢. Let £% be an arbitrary, fixed vector field. We

then have

0Je = 0O(¢, Led) — &€ - 0L
00(¢, Lep) — &+ dO(9,60)
00(¢, Lcp) — LeO(9,60) +d(§ - O, 00))

On the other hand, we have

00(¢, Lep) — LeO(9,00) = w(, 5, Led)




We therefore obtain

W(¢,00, Lep) = 0Je —d(E - ©)

Replacing J¢ by £2C, + dQ¢ and integrating over a
Cauchy surface X2, we obtain

0(6,00.Lc0) = [ [€'9C, +3dQe — d(¢ - ©)

[ &0+ [ pac—¢ o)

The (n — 1)-form © cannot be written as the variation

of a quantity locally and covariantly constructed out of
the dynamical fields (unless w = 0). However, it is

possible that for the class of spacetimes being considered,




we can find a (not necessarily diffeomorphism covariant)
(n — 1)-form, B, such that

5] ¢B=[ ¢.©

o) (o)

A Hamiltonian for the dynamics generated by &% exist
on this class of spacetimes it and only if such a B exists.

This Hamiltonian is then given by

ne- [eco [ e

Note that “on shell”, i.e., when the field equations are
satisfied, we have C, = 0 so the Hamiltonian is purely a

“surface term”.




Energy and Angular Momentum

If a Hamiltonian conjugate to a time translation £* = t¢
exists, we define the energy, £ of a solution ¢ = (gu, V)
by

= H; = t—1-B
¢ | @ -t-B)

Similarly, it a Hamiltonian, H,, conjugate to a rotation
£ = p® exists, we define the angular momentum, J of a

solution by

=—-H,=— —p-B
J=-H, /@E[Q*” o B

It o is tangent to X, the last term vanishes, and we




obtain simply




Energy and Angular Momentum in General Relativity:

ADM vs Komar

In general relativity in 4 dimensions, the Einstein-Hilbert

Lagrangian is

1
Lac:_acR
bed 167T€bd

This yields the symplectic potential 3-form

1
@ac: abcT 4 deglh V6e _ve(S -
be = €dabe o9 (Vr0gen 9rn)

The corresponding Noether current and Noether charge

are |
(Jf)abc — 8_7T€dabcve (v[efd]) )




and
1

(Qﬁ)ab — m—ﬂeabcdvcgd°

For asymptotically flat spacetimes, the formula for

angular momentum conjugate to an asymptotic rotation

* 18

1
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167
This agrees with the ADM expression, and when ¢® is a

Killing vector field, it agrees with the Komar formula.
For an asymptotic time translation t*, a Hamiltonian, H;,

exists with

1 _ i
t Bape = —16—7T€bc ((argtt — 0igrt) + 1" 1(Oihi; — akhij))




The corresponding Hamiltonian

1 g
= [ t°Co+ — [ dSr*hY(9;hy; — Oy
t /z +167T/oo > (Ol ki)

is precisely the ADM Hamiltonian, and the surface term
is the ADM mass,

1
Mapm = 167T / dSr*h" (8 hk] - 3khw)

By contrast, if t* is a Killing field, the Komar expression

1
MKomar — ea,bcalvctd
ST

happens to give the correct (ADM) answer, but this is

merely a fluke.




The First Law of Black Hole Mechanics

Return to a general, diffeomorphism covariant theory, and
recall that for any solution ¢, any d¢ (not necessarily a
solution of the linearized equations) and any £%, we have

(6,66, Led) = /E £6C, + /@ 6Qc — € ©))

)
Now suppose that ¢ is a stationary black hole with a
Killing horizon with bifurcation surface H. Let £* denote
the horizon Killing field, so that £%|; = 0 and

€CL — ta _|_ Qnga

Then L¢¢p = 0. Let 0¢ satisty the linearized equations,
so 0C, = 0. Let X be a hypersurface extending from H




to infinity.

0= [ pec—¢-en- [ sa

Thus, we obtain

5/Q§:55—QH5J
H

Furthermore, from the formula for ()¢ and the properties

of Killing horizons, one can show that

KR
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where S is defined by

S = 27T/ X e,
H

where €., denotes the binormal to H. Thus, we have

shown that the first law ot black hole mechanics

5SS =68 — QT
27

holds in an arbitrary diffeomorphism covariant theory of
gravity, and we have obtained an explicit formula for

black hole entropy S.




Variational Principle for Stability

Suppose one is interested in the stability of a stationary
solution, ¢, of the field equations. In certain cases—such
as spherically symmetric perturbations of static,
spherically solutions of Einstein-fluid equations—it may
be possible to fix the gauge and solve the linearized
constraint equations in such a way that for the reduced
linearized theory, the pullback of the symplectic current

to a Cauchy surface X takes the form

O
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where 1 denotes the dynamical variables for the reduced




linearized theory and W,z is constructed from the
quantities appearing in the background solution. It
follows that [, W,50%¢” is conserved, and, if positive
definite, yields an inner product (, ). If h is the

Hamiltonian for the reduced linearized theory, then

_ (¥, v)

J —

(¥, )

provides a variational principle, from which stability can
be readily determined.




