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Ψ
If the universe is a 
quantum mechanical 
system it has a 
quantum state. 
 What is it?

A Quantum Universe

That is the problem of 
Quantum Cosmology.



No State --- No Predictions

• The probability p at time t of an alternative 
represented by a projection P(t) (e.g a range of 
position) in a state          is:  

• If we don’t have the operator P and H and the 
state         there are no probabilities and no 
predictions. 

|Ψ〉

|Ψ〉

p = ||P (t)|Ψ〉||2

P (t) = eiHt/!P (0)e−iHt/!



Ignorance is not Bliss 

• No evolution              

• Infinite temperature equilibrium

• No second law of thermodynamics

• No classical behavior. 

ρ = I/Tr(I)

[H, ρ] = 0

< φ2(R) >=∞

Ignorance of the state means: 

All inconsistent with observation.



A theory of the 
quantum state 
of the universe  

is as much a part of a
 final theory 

as a theory of dynamics.



Cosmology --
An Environmental Science

•What regularities of the universe can mainly be 
attributed to the dynamics H and what mainly 
to        ?|Ψ〉
•Roughly, regularities in time are due to H and 
regularities in space are to         .|Ψ〉

•Solar system: Periods 
due to H, existence of 
the solar system and 
many more like it owes 
much to        .|Ψ〉



ADM Quantum Cosmology

The methods which ADM 
developed with the aim

of quantizing Einstein’s theory 
of gravity can be applied ...  to 
models of the Universe ... Our 

main interest is directed 
toward quantum effects on 

the singularity at the beginning 
of time ...



40 Years Later....
•A wave function of the universe. 

•Minisuperspace models

•The question of the validity of the classical Einstein 
equation in a quantum world.

But now as part of a final theory. 

But perhaps more motivated by particle physics. 

The subject of today’s talk!



The Quasiclassical Realm 
- A feature of our Quantum Universe

• Time --- from the Planck era forward.

• Place --- everywhere in the visible universe.

• Scale --- macroscopic to cosmological. 

The wide range  of time, place and scale on 
which the deterministic laws of classical physics 

hold to an excellent approximation.

What is the origin of this quasiclassical realm in a 
quantum universe characterized fundamentally 
by indeterminacy and distributed probabilities?



What is the 
origin of 
classical 

certainty in a 
quantum world?



Ehrenfest Deriv. of Classical Eqns

Ehrenfest’s Theorem:

A particle of mass m moving in one dimension x. 

For special states, typically narrow wave packets this 
becomes an equation of motion for the expected value: 

If a series of measurements is made with sufficient 
imprecision not to disturb this approximation the 
expected value will follow Newton’s law. 

m
d2〈x〉

dt2
= −

〈

dV

dx

〉

m
d2〈x〉

dt2
≈ −

dV (〈x(t)〉)

dx



We are not just 
interested in classical 
behavior of a few 
measured degrees of 
freedom. 

We are interested in 
classical behavior over 
the whole of the visible  
universe over most of 
its history. 

So the quasiclassical 
realm is a feature of 
the universe, and not 
our choice. 



Necessary  Requirements for 
Classical Behavior

Coarse graining of a particular kind.

Some restriction on the state. 

As seen in the Ehrenfest derivation. 



Classical Spacetime is 
the key to the origin of 

the rest of the 
quasiclassical realm. 



Origin of the Quasiclassical Realm

• Classical spacetime emerges from the quantum 
gravitational fog at the beginning.

• Local Lorentz symmetries imply conservation laws. 

• Sets of histories defined by averages of densities of 
conserved quantities over suitably small volumes 
decohere.

• Approximate conservation implies these 
quasiclassical variables are predictable despite the 
noise from decoherence. 

• Local equilibrium implies closed sets of equations of  
motion governing classical correlations in time. 



Only Certain States Lead to 
Classical Predictions

• Classical orbits are not predictions of 
every state in the quantum mechanics of a 
particle.

• Classical spacetime is not a prediction of 
every state in quantum gravity. 



Classical Spacetime is the Key to the 
Origin of the Quasiclassical Realm.

The quantum state of the universe 
is the key to the origin of

 classical spacetime
  in a quantum theory of gravity



A simple, discoverable theory of 
the  universe’s quantum state 

will not predict a 
unique classical history

 but rather
 the probabilities of

an ensemble of 
possible classical histories. 



What classical spacetimes are allowed
is a central question 

in quantum cosmology.



The Classical Spacetimes 
of Our Universe

We seek a state that will not just predict some classical 
spacetime but which predicts classical spacetimes with  a 
high probability for properties consistent with our 
cosmological observations. 

•homogeneity and isotropy
•the amount of matter
•the amount of inflation 
•a spectrum of density fluctuations consistent with 
the CMB and growth of large scale structure
•The thermodynamic arrow of time. 



Ψ(3G) =
∑

4G

exp[−I(4G)/!]

The No-Boundary
Quantum State 
of the Universe



We analyze the ensemble of classical 
spacetimes predicted by Hawking’s no-

boundary quantum state in a simple model:  

•Low Energy Quantum Gravity based on Einstein action:

•Geometry: homogeneous, isotropic, spatially closed:

•Matter:  cosmological constant      plus homogeneous 
scalar field     moving in a quadratic potential.  

V (Φ) =
1

2
m

2Φ2

are defined as follows:

ds2 = (3/Λ)
[

N2(λ)dλ2 + a2(λ)dΩ2
3

]

(4.3)

where dΩ2
3 is the round metric on the unit three-sphere. With these conventions neither

the scale factor a(λ), nor the lapse N(λ), nor any of the coordinates carry dimensions. The

scaling of the metric used here is different from that employed in [5], as are others in this

paper, but they prove convenient for simplifying the numerical work.

It proves convenient to introduce dimensionless measures H , φ, and µ of Λ, Φ, and m

respectively as follows:

H2 ≡ Λ/(3m2
p), (4.4a)

φ ≡ (4π/3)1/2Φ/mp, (4.4b)

µ ≡ (3/Λ)1/2m. (4.4c)

The scaling for H was chosen so that the scale factor of a classical inflating universe is

proportional to exp(Hmpt) — the usual definition of H . The other scalings were chosen to

make the action simple. In these variables the Euclidean action takes the following simple

form:

I[a(λ), φ(λ)] =
3π

4H2

∫ 1

0

dλN

{

−a

(

a′

N

)2

− a + a3 + a3

[

(

φ′

N

)2

+ µ2φ2

]}

(4.5)

where ′ denotes d/dλ and the surface terms in (4.1) have been chosen to eliminate second

derivatives. The center of symmetry (informally referred to as the ‘south pole’ SP) and the

boundary of the manifold M have arbitrarily been labeled by coordinates λ = 0 and λ = 1

respectively.

Three equations follow from extremizing the action with respect to N , φ, and a. They

imply the following equivalent relations:

(

a′

N

)2

− 1 + a2 + a2

[

−

(

φ′

N

)2

+ µ2φ2

]

= 0 (4.6a)

1

a3N

(

a3 φ′

N

)′

− µ2φ = 0, (4.6b)

1

N

(

a′

N

)′

+ 2a

(

φ′

N

)2

+ a(1 + µ2φ2) = 0 . (4.6c)

These three equations are not independent. The first of them is the Hamiltonian constraint.

From it, and any of the other two, the third follows.
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As we will see in Section V, the NBWF surface does not slice through the whole of clas-

sical phase space. Quantum mechanics assigns probabilities generally to decoherent sets of

alternative histories of the universe. But only in special circumstances are the probabilities

high for the correlations in time that define classical histories. A classical history therefore

cannot be expected to pass through every point qA. The classicality condition (3.15) gen-

erally specifies a boundary to the surface in phase space on which points corresponding to

classical histories lie.

This restriction of the ensemble of possible classical histories to a bounded surface in

phase space is already a powerful prediction of the NBWF whatever relative probabilities

are predicted for histories in it.

Eq. (3.17) gives the predictions of the NBWR for the probabilities of the histories within

the bounded surface in phase space defining the classical ensemble. As already noted these

probabilities define a history measure because they are conserved along the classical trajec-

tories.

The restrictions on available regions of classical phase space and the probability measures

within those regions are another way of expressing the predictive power of a theory of the

quantum state of the universe like the NBWF.

IV. HOMOGENEOUS ISOTROPIC MINI-SUPERSPACE MODELS

A. Euclidean Action and Equations for its Extrema

We use units where h̄ = c = 1. Newton’s constant G then has units of length squared

and defines the Planck length. This inversely related to the Planck mass mp by G = 1/m2
p.

The Euclidean action I[g, Φ] is a sum of a curvature part IC and a part IΦ for the scalar

field Φ. The general form for the curvature action is:

IC [g] = −
m2

p

16π

∫

M

d4x(g)1/2(R − 2Λ) + (surface terms) (4.1)

The general form for the matter action for a scalar field moving in a quadratic potential is:

IΦ[g, Φ] =
1

2

∫

M

d4x(g)1/2[(∇Φ)2 + m2Φ2] (4.2)

The integrals in these expressions are over the manifold M with one boundary defining the

NBWF (Section 1.2). With a convenient overall scale, the homogeneous, isotropic metrics

24

Λ
Φ



this is a text b

Wave Functions for the Universe
(minisuperspace models)

Geometry:  Homogeneous, isotropic, closed.  are defined as follows:

ds2 = (3/Λ)
[

N2(λ)dλ2 + a2(λ)dΩ2
3

]

(4.3)

where dΩ2
3 is the round metric on the unit three-sphere. With these conventions neither

the scale factor a(λ), nor the lapse N(λ), nor any of the coordinates carry dimensions. The

scaling of the metric used here is different from that employed in [5], as are others in this

paper, but they prove convenient for simplifying the numerical work.

It proves convenient to introduce dimensionless measures H , φ, and µ of Λ, Φ, and m

respectively as follows:

H2 ≡ Λ/(3m2
p), (4.4a)

φ ≡ (4π/3)1/2Φ/mp, (4.4b)

µ ≡ (3/Λ)1/2m. (4.4c)

The scaling for H was chosen so that the scale factor of a classical inflating universe is

proportional to exp(Hmpt) — the usual definition of H . The other scalings were chosen to

make the action simple. In these variables the Euclidean action takes the following simple

form:

I[a(λ), φ(λ)] =
3π

4H2

∫ 1

0

dλN

{

−a

(

a′

N

)2

− a + a3 + a3

[

(

φ′

N

)2

+ µ2φ2

]}

(4.5)

where ′ denotes d/dλ and the surface terms in (4.1) have been chosen to eliminate second

derivatives. The center of symmetry (informally referred to as the ‘south pole’ SP) and the

boundary of the manifold M have arbitrarily been labeled by coordinates λ = 0 and λ = 1

respectively.

Three equations follow from extremizing the action with respect to N , φ, and a. They

imply the following equivalent relations:

(

a′

N

)2

− 1 + a2 + a2

[

−

(

φ′

N

)2

+ µ2φ2

]

= 0 (4.6a)

1

a3N

(

a3 φ′

N

)′

− µ2φ = 0, (4.6b)

1

N

(

a′

N

)′

+ 2a

(

φ′

N

)2

+ a(1 + µ2φ2) = 0 . (4.6c)

These three equations are not independent. The first of them is the Hamiltonian constraint.

From it, and any of the other two, the third follows.
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Matter:  cosmological constant plus scalar field 

Ψ = Ψ(b, χ)ψ = ψ(x, t)



Ground State of SHO

ψ(x0) =
∫

δx exp {−I[x(τ)]/!}

I[x(τ)] =
1
2

∫
dτ [ẋ2+ω2x2]

Hψ = Eψ

Two methods

Lowest Eigenvalue of the Hamiltonian                     .

Euclidean sum-over histories:

ψ(x0) ∝ exp(−ωx2
0/2)



Hawking’s No-Boundary Wave Function

                                                                                                
                                                                                 .
Ψ(b, χ) ≡

∫
C

δNδaδφ exp(−I[N(λ), a(λ), φ(λ)]/h̄)

Cosmological analog of ground state

No H to be a lowest eigenvalue of,  
for a closed universe H = 0

Euclidean sum over all four 
geometries with one boundary 
for the arguments of the wave 
function and no other. 

XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX



Classical spacetime is predicted in   
states for which the probability is 

high for decoherent histories 
exhibiting patterns of correlation 
implied of the Einstein equation. 



Classical Pred. in NRQM ---Key Points

• When S(q0) varies rapidly and A(q0) varies 
slowly, high probabilities are predicted for 
classical correlations in time of suitably coarse 
grained histories.

•  For each q0 there is a classical history with 
probability:  

Semiclassical form:

Ψ(q0) = A(q0)e
iS(q0)/h̄

p0 = ∇S(q0) p(class.hist.) = |A(q0)|
2



                                                                 .

Semiclassical Approx. for the NBWF

• In certain regions of superspace the steepest 
descents approximation may be ok.k. 

• To leading order in ħ the NBWF will then have the 
semiclassical form:

• The next order will contribute a prefactor which we 
neglect. Our probabilities are therefore only relative. 

Ψ(b, χ) ≡

∫
C

δNδaδφ exp(−I[N(λ), a(λ), φ(λ)]/h̄)

In quantum cosmology states are represented by wave functions on the superspace of

three-geometries and spatial matter field configurations. For the homogeneous, isotropic,

spatially closed, minisuperspace models with one scalar field that are the subject of this pa-

per, wave functions depend on the scale factor b determining the size of the spatial geometry

and the value χ of the homogeneous scalar field. Thus, Ψ = Ψ(b, χ).

A class of states of particular interest are those whose wave functions can be approximated

in the semiclassical form (or superpositions of such forms) to leading order in h̄

Ψ(b, χ) ≈ exp{[−IR(b, χ) + iS(b, χ)]/h̄} (1.1)

in some region of superspace with both IR and S real and (∇S)2 $ (∇IR)2. These can

be shown to predict an ensemble of suitably coarse-grained Lorentzian histories with high

probabilities for correlations in time governed by classical deterministic laws for spacetime

geometry and matter fields. The action S determines the ensemble as in familiar Hamilton-

Jacobi theory. Classical histories not contained in the ensemble have zero probability in this

approximation. The classical histories that are members of the ensemble have probabilities

proportional to exp[−2IR(b, χ)]/h̄]. In this way the choice of a particular state becomes

predictive.

The no-boundary wave function is defined by the sum-over-histories

Ψ(b, χ) =

∫

C

δaδφ exp(−I[a(τ), φ(τ)]/h̄). (1.2)

Here, a(τ) and φ(τ) are the histories of the scale factor and matter field and I[a(τ), φ(τ)]

is their Euclidean action. The sum is over cosmological geometries that are regular on a

manifold with only one boundary at which a(τ) and φ(τ) take the values b and χ. The

integration is carried out along a suitable complex contour C which ensures the convergence

of (1.2) and the reality of the result [13].

For some ranges of b and χ it may happen that the integral in (1.2) can be approximated

by the method of steepest descents. Then the wave function will be well approximated by a

sum of terms of the form (1.1) — one for each extremizing history (a(τ), φ(τ)) matching (b, χ)

on the boundary of the manifold and regular elsewhere. In simple cases these extremizing

histories may describe the nucleation of a Lorentzian spacetime by a Euclidean instanton.

But in general they will be complex — “fuzzy instantons”. For each contribution IR(b, χ)

is the real part of the action I[a(τ), φ(τ)] evaluated at the extremizing history and −S(b, χ)

4



Instantons and Fuzzy Instantons

In simple cases the extremal geometries may be real 
and involve Euclidean instantons, but in general they 
will be a complex --- fuzzy instantons. 



                         .

Classical Prediction in MSS and 
The Classicality Constraint

This follows directly from the definition (3.2) or can be proved explicitly from the equations

of motion (3.3). Using (3.9) the real and imaginary parts of this equation can be written.

−
1

2
(∇IR)2 +

1

2
(∇S)2 + V(qA) = 0, (3.14a)

∇IR ·∇S = 0. (3.14b)

We see immediately that the Hamilton-Jacobi equation for S(qA) will be satisfied in

regions of minisupespace where

(∇IR)2 # (∇S)2. (3.15)

This is the classicality condition which plays a central role in this work. In regions of min-

isuperspace where it is satisfied the steepest descents approximation to the NBWF predicts

an ensemble of classical histories which are the integral curves of S. That is it predicts and

ensemble where the momenta of a curve passing through qA is

pA(qA) = ∇AS(qA) (3.16)

The other consequence of the Euclidean Hamilton-Jacobi equation is (3.14b). This implies

that IR(qA) is constant along the integral curves of S(qA). That is each classical Lorentzian

history is associated with a value of IR. Indeed, in a two-dimensional minisuperspace like

that of this paper (3.14b) implies that curves of constant IR are integral curves of S.

In principle the probability for any history can be calculated from the wave function Ψ(qA)

and the machinery of generalized quantum mechanics without a semiclassical approximation.

The semiclassical form is only a sufficient criterion for classicality. We will assume that once

classical histories have been identified in a region of minisuperspace where the classicality

condition holds they may be extended to regions where it does not hold using the classical

equations of motion unless they become classically singular. It is plausible, for instance, that

a bouncing universe whose radius never falls below the Planck length will remain classical

throughout its histories even if can only be identified by a steepest descents approximation

in some regions of minisuperspace. That is an assumption which can in principle be checked

in the full quantum mechanical theory.

We next turn to the probabilities predicted by the NBWF for the individual histories in

the classical ensemble. According to (2.20), the relative probability for classical histories

passing through a spacelike surface in minisuperspace with unit normal nA is given by

p(qA) = |P (qA)|2e−2IR(qA)(n ·∇S) (3.17)
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p(class. hist.) ∝ exp(−2IR/h̄)

In quantum cosmology states are represented by wave functions on the superspace of

three-geometries and spatial matter field configurations. For the homogeneous, isotropic,

spatially closed, minisuperspace models with one scalar field that are the subject of this pa-

per, wave functions depend on the scale factor b determining the size of the spatial geometry

and the value χ of the homogeneous scalar field. Thus, Ψ = Ψ(b, χ).

A class of states of particular interest are those whose wave functions can be approximated

in the semiclassical form (or superpositions of such forms) to leading order in h̄

Ψ(b, χ) ≈ exp{[−IR(b, χ) + iS(b, χ)]/h̄} (1.1)

in some region of superspace with both IR and S real and (∇S)2 $ (∇IR)2. These can

be shown to predict an ensemble of suitably coarse-grained Lorentzian histories with high

probabilities for correlations in time governed by classical deterministic laws for spacetime

geometry and matter fields. The action S determines the ensemble as in familiar Hamilton-

Jacobi theory. Classical histories not contained in the ensemble have zero probability in this

approximation. The classical histories that are members of the ensemble have probabilities

proportional to exp[−2IR(b, χ)]/h̄]. In this way the choice of a particular state becomes

predictive.

The no-boundary wave function is defined by the sum-over-histories

Ψ(b, χ) =

∫

C

δaδφ exp(−I[a(τ), φ(τ)]/h̄). (1.2)

Here, a(τ) and φ(τ) are the histories of the scale factor and matter field and I[a(τ), φ(τ)]

is their Euclidean action. The sum is over cosmological geometries that are regular on a

manifold with only one boundary at which a(τ) and φ(τ) take the values b and χ. The

integration is carried out along a suitable complex contour C which ensures the convergence

of (1.2) and the reality of the result [13].

For some ranges of b and χ it may happen that the integral in (1.2) can be approximated

by the method of steepest descents. Then the wave function will be well approximated by a

sum of terms of the form (1.1) — one for each extremizing history (a(τ), φ(τ)) matching (b, χ)

on the boundary of the manifold and regular elsewhere. In simple cases these extremizing

histories may describe the nucleation of a Lorentzian spacetime by a Euclidean instanton.

But in general they will be complex — “fuzzy instantons”. For each contribution IR(b, χ)

is the real part of the action I[a(τ), φ(τ)] evaluated at the extremizing history and −S(b, χ)
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•Following the NRQM analogy this semiclassical form 
will predict classical Lorentian histories that are the 
integral curves of  S, ie the solutions to:

•However, we can expect this only when S is rapidly 
varying and IR is slowly varying, e.g. 

This is the classicality constraint. 

pA = ∇AS



Class. Prediction --- Key Points
•The NBWF predicts an ensemble of entire, 4d, 
classical histories. 

•These real, Lorentzian, histories are not the same as 
the complex extrema that supply the semiclassical 
approximation to the integral defining the NBWF. 



No-Boundary Measure on 
Classical Phase Space 

The NBWF predicts an ensemble of classical histories  
that can be labeled by points in classical phase space. 
The NBWF gives a measure on classical phase space. 

The NBWF predicts a one-parameter subset of the two-
parameter family of classical histories, and the classicality 

constraint gives that subset a boundary. 



Equations and BC

φ(0) ≡ φ0e
iγ

(φ0, γ, X, Y ) ←→ (b, χ, 0, 0)

B. Complex Gauge

The extremizing solutions a(λ), φ(λ), and N(λ) will generally be complex. Assuming

they are analytic functions, the integral (4.5) can be thought of as taken over a real contour

in the complex λ plane between 0 and 1. Following Lyons [5] it is then useful to introduce

a new complex variable τ defined by

τ(λ) ≡

∫ λ

0

dλ′N(λ′) (4.7)

The function τ(λ) defines a contour in the complex τ -plane for each lapse function N(λ).

Conversely each finite contour starting at τ = 0 defines a function N(λ). The action (4.5) can

be rewritten as an integral over the countour C(0, υ) in the complex τ -plane corresponding

to the N(λ) in (4.5) and connecting τ = 0 with an endpoint we denote by υ. Specifically,

I[a(τ), φ(τ)] =
3π

4H2

∫

C(0,υ)

dτ
[

−aȧ2 − a + a3 + a3
(

φ̇2 + µ2φ2
)]

(4.8)

and ḟ denotes df/dτ .

The equations (4.6) also simplify in the new variable, viz:

ȧ2 − 1 + a2 + a2
(

−φ̇2 + µ2φ2
)

= 0 (4.9a)

φ̈ + 3(ȧ/a)φ̇ − µ2φ = 0, (4.9b)

ä + 2aφ̇2 + a(1 + µ2φ2) = 0 . (4.9c)

These are the equations we will use to calculate the complex extremizing geometries and

matter field configurations.

Two contours that connect the same endpoints in the τ -plane give the same value for the

action provided they can smoothly be distorted into one another. They are equivalent as far

as the semiclassical approximation to the NBWF is concerned. Another way of saying this

is that (4.7) defines a complex coordinate transformation under which the action is invariant

if the contours can be smoothly distorted into one another.

This suggests that a solution to equations (4.9) should be considered as a pair of complex

analytic functions a(τ) and φ(τ). We can evaluate the action with these functions by picking

any convenient contour in τ connecting the center of symmetry to the boundary. We will

exploit this in what follows.

26

a(0) = 0, ȧ(0) = 1, φ̇(0) = 0

Extremum
Equations:

Regularity at 
South Pole: 

Parameter 
matching: 

You won’t follow this. 
I just wanted to show how 

much work we did. 

The only important point is that there is 
one classical history for each value of the 

field at the south pole                    .   φ0 ≡ |φ(0)|

h̄ = c = G = 1, µ ≡ (3/Λ)1/2m, φ ≡ (4π/3)1/2Φ, H2
≡ Λ/3



Finding Solutions

• For each     tune remaining parameters to 
find curves  in        for which     approaches 
a constant at large b. 

• Those are the Lorentzian histories.

• Extrapolate backwards using the Lorentizan 
equations to find their behavior at earlier 
times. 

• The result is a one-parameter family of 
classical histories whose probabilities are  

φ0

(b, χ) IR

p(φ0) ∝ exp(−2IR)



Members of the Classical Ensemble
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Singularity Resolution

• The NBWF predicts probabilities for entire 
classical histories not their initial data. 

• The NBWF therefore predicts probabilities 
for late time observables like CMB 
fluctuations whether or not the origin of the 
classical history is singular. 

• The existence of singularities in the 
extrapolation of some classical approximation 
in quantum mechanics is not an obstacle to 
prediction by merely a limitation on the 
validity  of the approximation. 



Cosmological Questions

• That the universe was singular in the beginning or 
bounced at a small radius. 

• That the universe recollapses in the future or expands 
forever.

• For the number of efoldings of inflation.

• For the direction of the arrow of time.

• For small fluctuations away from homogeneity and 
isotropy. 

In the classical ensemble what is the probability that:



Answers
µ = 3m/Λ > 3/2

In terms of bottom-up probabilities 
conditioned only on the NBWF

for histories in the classical ensemble. 



Origins 

No large, nearly empty, classical universes.



Classicality Constraint ---Pert. Th. 
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Small field perts on deSitter space. 

μ<3/2 μ>3/2

Classical Not-classical 

This is a  simple consequence of two decaying modes for          
 μ<3/2,  and two oscillatory modes for μ>3/2.



Probabilities and Origins

V =
1
2
m2Φ2

µ ≡ (3/Λ)m

There is a significant probability that the universe 
never reached the Planck scale in its entire evolution.



Arrows of Time 
• The growth of fluctuations defines an 

arrow of time, order into disorder. 

• NBWF fluctuations vanish at the 
South Pole of the fuzzy instanton. 

• Fluctuations therefore increase away 
from the bounce on both sides. 

• Time’s arrow points in opposite 
directions on the opposite sides of 
the bounce.  

• Events on one side will therefore have 
little effect on events on the other.  

compare Caroll & Chen



Future

Recollapse only for                                .           µ ∼ m/Λ1/2 > 23



Inflation
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There is scalar field driven 
inflation for all histories 
allowed by the classicality 
constraint, but a small number 
of efoldings N for the most 
probable of them. 
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The NBWF selects inflating histories 
that are exponentially improbable with 
a uniform measure on phase space. 
(Gibbons &Turok’06)



Probabilities for Our Observations
• The NBWF predicts probabilities for entire 4-d 

histories. 

• We so not somehow observe 4-d histories from the 
outside. 

• Rather, we are physical systems within the universe, 
living at some particular location in spacetime that is 
partially specified by our data D. 

• Probabilities for observations are therefore 
conditioned on D. 

• The probabilities for observations of the CMB for 
instance depend on when and where they are made.



Probabilities for Observations 

• The NBWF predicts probabilities for entire classical 
histories. (Bottom-up probabilities.) 

• Our observations are restricted to a part of a light 
cone extending over a Hubble volume and located 
somewhere in spacetime.

• To get the probabilities for our observations (top-
down probabilities) we sum over the bottom-up 
probabilities for the classical spacetimes that contain 
our data at least once,  and then sum over the possible 
locations of our light cone in them. 



Sum over location in 
homo/iso models

• Assume our data locate us on a surface 
of homogeneity, and approx. data on 
the past light cone by data in a Hubble 
vol. on that surface

• Assume we are rare. (If we are 
everywhere there is no sum).

• The sum multiplies the probability for 
each history      by 

Page 97, Hawking 07

φ0

Vsurf/VHubble ≈ exp(3N) N= # efoldings



Volume Weighting favors Inflation
By itself, the NBWF + classicality favor low inflation, 
but we are are more likely to live in a universe that has 
undergone more inflation, because there are more 
places for us to be. 

p(φ0|H0, ρ) ∝ exp(3N)p(φ0) ∝ exp(3N − 2IR)



Observers are Quantum Systems
within the Universe

•Volume weighting will break down in the very large (or 
infinite) universes contemplated by contemporary 
inflationary theories. 

•It is then essential to take into account that observers 
are quantum physical subsystems within the universe 
that arose from quantum processes that occurred over 
the course of its history. 



Our  Model Observer
Characterized by local data D in its past light cone 
including its own description. 

A probability          for D to 
exist at any one location. 

All we know for certain about the universe is that is 
has at least one copy of our data,         . 

pE(D) 1− pE(D)

pE(D)

D≥

The probability pE is very small, but in a very large 
universe the probability becomes significant that D 
will be replicated exactly elsewhere. 



Replication and Regulation
•In an infinite universe volume 
weighting breaks down. 
•In an infinite universe the probability 
is unity that we are replicated 
elsewhere.  We are then not rare.  

Srednicki a.o.  07
Hertog a.o     09

•We are quantum physical systems within the universe that 
have a probability pE to exist in any Hubble volume.

• Rather than volume, probabilities should be weighted by 
the probability that the is at least one instance of us in the 
universe (all we know for certain). 

• This is finite for infinite number of Hubble volumes Nh 

but reduces to volume weighting when pE is small (rare).

1− (1− pE)Nh



Forthcoming Results on 
Inhomogeneous Fluctuations

• We calculated the (top-down) NBWF probabilities for 
small fluctuations away from homogeneity and 
isotropy conditioned on at least one instance of our 
data. 

• Fluctuations on observable scales (e.g. CMB)  are 
Gaussian whether we are rare or not.  

• On large scales that left the horizon in the regime of 
eternal inflation the universe is predicted to be 
significantly inhomogenous. 



The Main Points Again
• The universe has a quantum state.

• Classical spacetime is the key to the classical realm.

• Only certain states in quantum gravity predict classical 
cosmological spacetimes. 

• The NBWF predicts an ensemble of classical cosmological 
spacetimes with probabilities for whether they bounce or 
are singular, the amount of inflation, the sizes of 
fluctuations, and the direction of time’s arrow.

• Probabilities for our observations are conditioned on a 
description of us and the observational situation, implying a 
volume weighting of probabilities of histories. 

• These probabilities favor significant inflation and a universe 
that is inhomogeneous on very large scales. 



Questions for ADM

•Fifty years ago what did you think 
would be the future of quantum 
gravity?

•Where do we stand today and what 
do we have left to do?

•How do you think today’s efforts 
will appear at  ADM-100?



Thank you ADM!

For starting it all off.  

I hope you like where it went!


