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A Quantum Universe

If the universe is a
quantum mechanical
system it has a

quantum state.
What is it!

That is the problem of
Quantum Cosmology.




No State --- No Predictions

® The probability p at time t of an alternative
represented by a projection P(t) (e.g a range of
position) in a state U) js:

p=[[P®)¥)|*

P(t) _ 673Hlt/7iP(O)e—z’Ht/h

® |f we don’t have the operator P and H and the
state |W) there are no probabilities and no
predictions.




lenorance is not Bliss

lgnorance of the state means: p = [/T'r([)

No evolution [H,p] =0
Infinite temperature equilibrium
No second law of thermodynamics

No classical behavior. < ¢*(R) >= 00

All inconsistent with observation.




A theory of the
quantum state
of the universe
is as much a part of a
final theory
as a theory of dynamics.




Cosmology --
An Environmental Science

*What regularities of the universe can mainly be

attributed to the dynamics H and what mainly
to ‘\I’> !

*Roughly, regularities in time are due to H and

regularities in space are to )

*Solar system: Periods
due to H, existence of
the solar system and

many more like it owes
much to |U) .
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CHARLES W. MISNER

The methods which ADM
developed with the aim
of quantizing Einstein’s theory

of gravity can be applied ... to
models of the Universe ... Our

main interest is directed
toward quantum effects on
the singularity at the beginning
of time ...
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40 Years Later....

* A wave function of the universe.

But now as part of a final theory.

*Minisuperspace models

But perhaps more motivated by particle physics.

*The question of the validity of the classical Einstein
equation in a quantum world.

The subject of today’s talk!




The Quasiclassical Realm
- A feature of our Quantum Universe

The wide range of time, place and scale on
which the deterministic laws of classical physics
hold to an excellent approximation.

® Time --- from the Planck era forward.
® Place --- everywhere in the visible universe.
® Scale --- macroscopic to cosmological.

What is the origin of this quasiclassical realm in a
quantum universe characterized fundamentally

by indeterminacy and distributed probabilities?




OH ALICE. YOURE Y / BUT BaB- N A
] | @QuAanNTuM WORLD
HOW CAN WE BE SURE

What is the
origin of
classical

certainty in a
quantum world? E




Ehrenfest Deriv. of Classical Egns

A particle of mass m moving in one dimension x.

d*(x) dVv
Ehrenfest’s Theorem: m — —

dt2 dr

For special states, typically narrow wave packets this
becomes an equation of motion for the expected value:
2
d*(xr)  dV({z(t)))
m— - =
dt dx
If a series of measurements is made with sufficient
imprecision not to disturb this approximation the
expected value will follow Newton’s law.




We are not just
interested in classical
behavior of a few
measured degrees of
freedom.

We are interested in
classical behavior over
the whole of the visible
universe over most of
its history.

So the quasiclassical
realm is a feature of
the universe, and not
our choice.




Necessary Requirements for
Classical Behavior

As seen in the Ehrenfest derivation.

Coarse graining of a particular kind.

Some restriction on the state.




Classical Spacetime is
the key to the origin of
the rest of the
quasiclassical realm.




Origin of the Quasiclassical Realm

® Classical spacetime emerges from the quantum
gravitational fog at the beginning.

Local Lorentz symmetries imply conservation laws.

Sets of histories defined by averages of densities of
conserved quantities over suitably small volumes
decohere.

Approximate conservation implies these
quasiclassical variables are predictable despite the
noise from decoherence.

Local equilibrium implies closed sets of equations of
motion governing classical correlations in time.




Only Certain States Lead to
Classical Predictions

® Classical orbits are not predictions of
every state in the quantum mechanics of a
particle.

® Classical spacetime is not a prediction of
every state in quantum gravity.




Classical Spacetime is the Key to the
Origin of the Quasiclassical Realm.

The quantum state of the universe
is the key to the origin of
classical spacetime

in 2 quantum theory of gravity




A simple, discoverable theory of
the universe’s quantum state
will not predict a
unique classical history

but rather
the probabilities of
ah ensemble of

possible classical histories.




What classical spacetimes are allowed

is a central question
in quantum cosmology.




The Classical Spacetimes
of Our Universe

We seek a state that will not just predict some classical
spacetime but which predicts classical spacetimes with a

high probability for properties consistent with our
cosmological observations.

*homogeneity and isotropy
*the amount of matter
ethe amount of inflation

°a spectrum of density fluctuations consistent with
the CMB and growth of large scale structure

* The thermodynamic arrow of time.




The No-Boundary
Quantum State
of the Universe




We analyze the ensemble of classical
spacetimes predicted by Hawking’s no-
boundary quantum state in a simple model:

°Low Energy Quantum Gravity based on Einstein action:

d*z(¢g)Y*(R — 2A) + (surface terms)
M

*Geometry: homogeneous, isotropic, spatially closed:
ds® = (3/A) [NQ()\)d)\2 + aQ()\)dﬂg]

*Matter: cosmological constant A plus homogeneous
scalar field ® moving in a quadratic potential.

1
V((I)) = §m2<132




Wave Functions for the Universe
(minisuperspace models)

Geometry: Homogeneous, isotropic, closed.
ds* = (3/A) [Nz()\)al)\2 + aQ()\)ng]
Matter: cosmological constant plus scalar field
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Ground State of SHO

Two methods

Lowest Eigenvalue of the Hamiltonian 7y = Ev

=

L
Y(xg) = /5xexp{—][x(7)]/h} Xo

Euclidean sum-over histories: A

q:?

Ia(r)] = 5 / dr]i?+w?s?

Y(xg) o< exp(—wzs /2)




Hawking’s No-Boundary VWave Function

Cosmological analog of ground state

OB DO SN SigEr e,
OIS UNINSFO IO X

Euclidean sum over all four
geometries with one boundary
for the arguments of the wave
function and no other.

(b, ) = /C SNSasé exp(~ T[N (M), a(A). 6(N)]/h)




Classical spacetime is predicted in
states for which the probability is
high for decoherent histories
exhibiting patterns of correlation
implied of the Einstein equation.




Classical Pred.in NRQM ---Key Points

Semiclassical form:

U (qo) = A(qp)et(a0)/P

® When S(qo) varies rapidly and A(qo) varies
slowly, high probabilities are predicted for
classical correlations in time of suitably coarse
grained histories.

® For each qo there is a classical history with
probability:
po = VS(qo) p(class.hist.) = |A(qo)|”




Semiclassical Approx. for the NBVVF
B (b, y) = /C SNSadhexp(—I[N(N). a()), o(\)]/5)

® |n certain regions of superspace the steepest
descents approximation may be ok.

® To leading order in h the NBWF will then have the
semiclassical form:

W(b, x) ~ exp{[—Ir(b, x) +1S(b, )]/}

® The next order will contribute a prefactor which we
neglect. Our probabilities are therefore only relative.




Instantons and Fuzzy Instantons

In simple cases the extremal geometries may be real
and involve Euclidean instantons, but in general they
will be a complex --- fuzzy instantons.




Classical Prediction in MSS and

The Classicality Constraint
\Ij(bv X) ~ exp{[—]R(b, X) - ZS(bv X)/h}

*Following the NRQM analogy this semiclassical form
will predict classical Lorentian histories that are the
integral curves of S, ie the solutions to:

pa=VAS p(class. hist.) oc exp(—21g/h)

*However, we can expect this only when S is rapidly
varying and Ir is slowly varying, e.g.

(VIg)? < (VS)*.

This is the classicality constraint.




Class. Prediction --- Key Points

*The NBWVF predicts an ensemble of entire, 4d,
classical histories.

*These real, Lorentzian, histories are not the same as
the complex extrema that supply the semiclassical
approximation to the integral defining the NBVVF.




No-Boundary Measure on

Classical Phase Space

The NBWEF predicts an ensemble of classical histories
that can be labeled by points in classical phase space.
The NBWF gives a measure on classical phase space.

p A

NBWF |

. S

' |
| /
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The NBWVF predicts a one-parameter subset of the two-
parameter family of classical histories, and the classicality
constraint gives that subset a boundary.




Equations and BC

h=c=G=1, p=3/MN)"?*m, ¢ = (4r/3)Y/2®, H> = A/3

You won'’t follow this.
exer | just wanted to show how
Equ: much work we did.

i+ 2a0° + a(l + p*¢*) =0

=] p— — .
Souyl 1he only important point is that there is

one classical history for each value of the
Par{ field at the south pole @9 = |¢(0)] .

matChlng (¢0777X7 Y) (b’X’O’O)




Finding Solutions

For each ¢g tune remaining parameters to
find curves in (b, x) for which Ir approaches
a constant at large b.

Those are the Lorentzian histories.

Extrapolate backwards using the Lorentizan
equations to find their behavior at earlier
times.

The result is a one-parameter family of
classical histories whose probabilities are

p(@o) o< exp(—21R)




Members of the Classical Ensemble
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Singularity Resolution

® The NBVVF predicts probabilities for entire
classical histories not their initial data.

The NBWF therefore predicts probabilities
for late time observables like CMB
fluctuations whether or not the origin of the
classical history is singular.

The existence of singularities in the
extrapolation of some classical approximation
in quantum mechanics is not an obstacle to
prediction by merely a limitation on the
validity of the approximation.




Cosmological Questions

In the classical ensemble what is the probability that:

® That the universe was singular in the beginning or
bounced at a small radius.

That the universe recollapses in the future or expands
forever.

For the number of efoldings of inflation.

For the direction of the arrow of time.

For small fluctuations away from homogeneity and
Isotropy.




Answers
nw=3m/A > 3/2

In terms of bottom-up probabilities
conditioned only on the NBWF
for histories in the classical ensemble.




Origins

RoUNCE

No large, nearly empty, classical universes.




Classicality Constraint ---Pert. Th.

Small field perts on deSitter space.
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H<3/2
Classical Not-classical

This is a simple consequence of two decaying modes for
u<3/2, and two oscillatory modes for p>3/2.




Probabilities and Origins

T ped

— BOUNCING

There is a significant probability that the universe
never reached the Planck scale in its entire evolution.




Arrows of Time

The growth of fluctuations defines an
arrow of time, order into disorder.

NBWF fluctuations vanish at the
South Pole of the fuzzy instanton.

Fluctuations therefore increase away
from the bounce on both sides.

Time’s arrow points in opposite
directions on the opposite sides of
the bounce.

Events on one side will therefore have
little effect on events on the other.




Future

EXPAND FOREVER

——

—

RECOLIAPSE
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Recollapse only for (1 ~ m/Al/2 > 23.




Inflatiop

The NBWVF selects inflating histories
that are exponentially improbable with
a uniform measure on phase space.

(Gibbons &Turok’06)
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There is sc |
inflation fo
allowed by
constraint,
of efolding:
probable of them.




Probabilities for Our Observations

® The NBWVF predicts probabilities for entire 4-d
histories.

We so not somehow observe 4-d histories from the
outside.

Rather, we are physical systems within the universe,
living at some particular location in spacetime that is
partially specified by our data D.

Probabilities for observations are therefore
conditioned on D.

The probabilities for observations of the CMB for
instance depend on when and where they are made.




Probabilities for Observations

® The NBWVF predicts probabilities for entire classical
histories. (Bottom-up probabilities.)

Our observations are restricted to a part of a light
cone extending over a Hubble volume and located
somewhere in spacetime.

® To get the probabilities for our observations (

) we sum over the bottom-up
probabilities for the classical spacetimes that contain
our data at least once, and then sum over the possible
locations of our light cone in them.




Sum over location in
homo/iso models

Assume our data locate us on a surface
of homogeneity, and approx. data on
the past light cone by data in a Hubble
vol. on that surface

Assume we are rare. (If we are
everywhere there is no sum).

The sum multiplies the probability for
each history ¢o by

%urf/VHubble ~ eXP(3N) N=# efoldings




Volume Weighting favors Inflation

By itself, the NBWF + classicality favor low inflation,
but we are are more likely to live in a universe that has
undergone more inflation, because there are more
places for us to be.

p(do|Ho, p) < exp(3N)p(¢g) x exp(3N — 2IR)

2l 3N-21
¢7 _CLASSICALITY | <2 CLASSICALITA




Observers are Quantum Systems
within the Universe

*Volume weighting will break down in the very large (or
infinite) universes contemplated by contemporary
inflationary theories.

|t is then essential to take into account that observers
are quantum physical subsystems within the universe
that arose from quantum processes that occurred over
the course of its history.




All we know for certain about the universe is that is
has at least one copy of our data, D= .




Replication and Regulation

°In an infinite universe volume th - %‘é@;\
weighting breaks down. 2

°In an infinite universe the probability | ‘i’ﬁem@mwm

: : : SCALE T
is unity that we are replicated N
SURFACE o)

elsewhere. We are then not rare. | HOMOGENEITY

——— NA

*We are quantum physical systems within the universe that

have a probability pe to exist in any Hubble volume.

e Rather than volume, probabilities should be weighted by
the probability that the is at least one instance of us in the

universe (all we know for certain).
1 —(1—pg)™
e This is finite for infinite number of Hubble volumes N
but reduces to volume weighting when pe is small (rare).




Forthcoming Results on
Inhomogeneous Fluctuations

® We calculated the (top-down) NBWF probabilities for
small fluctuations away from homogeneity and

isotropy conditioned on at least one instance of our
data.

Fluctuations on observable scales (e.g. CMB) are
Gaussian whether we are rare or not.

On large scales that left the horizon in the regime of
eternal inflation the universe is predicted to be
significantly inhomogenous.




The Main Points Again

The universe has a quantum state.
Classical spacetime is the key to the classical realm.

Only certain states in quantum gravity predict classical
cosmological spacetimes.

The NBWEF predicts an ensemble of classical cosmological
spacetimes with probabilities for whether they bounce or

are singular, the amount of inflation, the sizes of
fluctuations, and the direction of time’s arrow.

Probabilities for our observations are conditioned on a
description of us and the observational situation, implying a
volume weighting of probabilities of histories.

These probabilities favor significant inflation and a universe
that is inhomogeneous on very large scales.




Questions for ADM

® Fifty years ago what did you think
would be the future of quantum
gravity!?

® Where do we stand today and what
do we have left to do!

® How do you think today’s efforts
will appear at ADM-100?




Thank you ADM!

For starting it all off.

| hope you like where it went!




