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• There is a vast accumulation of knowledge about exact so-
lutions in four-dimensional General Relativity. Much less is
known about the possibilities in higher dimensions.

• With the advent of supergravity and string theory, it becomes
important to study higher-dimensional solutions.

• Some familiar 4-dimensional uniqueness theorems no longer
apply; Structure of solution space can be much enlarged in
higher dimensions.

• In string theory, five dimensions is of particular interest, be-
cause of the AdS/CFT correspondence. Especially, black
holes in D = 5 Einstein theory with a cosmological constant,
and charged black holes in gauged supergravities.

• D = 5 is intriguing since it admits black hole solutions not
only with S3 horizon topology, but also S1×S2 (black rings).

• Here, we focus first on black holes in D ≥ 5 dimensions with
SD−2 horizon topology. We shall describe rotating black holes
without, and with, a cosmological constant; the introduction
of NUT parameters; the introduction of charge (in gauged
supergravity); and the some further recent generalisations in
D = 5.

• We also look at homogeneous Einstein metrics on group
manifolds, and inhomogeneous metrics on spheres, showing
how the Einstein equations become less and less restrictive
in higher dimensions.



Review of Kerr-AdS in Four Dimensions

The Kerr-AdS solution, satisfying Rµν = −3g2 gµν, is

ds2
4 = −

∆r

ρ2
(dt−

a

Ξ
sin2 θdφ)2 +

∆θ sin2 θ

ρ2
(adt−

r2 + a2

Ξ
dφ)2 +

ρ2dr2

∆r
+
ρ2dθ2

∆θ

where Ξ = 1− g2a2 and

∆r = (r2 + a2)(1 + g2r2)− 2mr , ∆θ = 1− a2g2 cos2 θ , ρ2 = r2 + a2 cos2 θ

It is characterised by mass m and rotation a parameters. Defining new coor-
dinates by x = r, y = a cos θ, φ = aΞψ and t = τ + a2ψ, gives

ds2
4 = −

X(dτ + y2dψ)2

x2 + y2
+
Y (dτ − x2dψ)2

x2 + y2
+ (x2 + y2) (

dx2

X
+
dy2

Y
)

(Carter-Plebanski form of the metric.)

X = (a2 + x2)(1− g2x2)− 2mx , Y = (a2 − y2)(1− g2y2) + 2`y

Here we have added in a NUT charge ` as well. (Note symmetry with mass.)

There is a complete symmetry between x and y.

The outer event horizon, at the largest root of X(x) = 0, is topologically S2,
and geometrically a spheroid.



Rotating Black Holes in D ≥ 5 Dimensions

The Ricci-flat rotating black holes in D ≥ 5 were constructed by Myers and
Perry, 1980. The generalisation to include a cosmological constant was ob-
tained by Gibbons, Lü, Page and CNP, 2004.

There are independent rotations ai in the [(D − 1)/2] orthogonal 2-planes:

ds2 = −W (1 + g2r2) dt2 +
2m

U

(
W dt−

N∑
i=1

ai µ2
i dϕi

Ξi

)2

+
N∑
i=1

r2 + a2
i

Ξi
µ2
i dϕ

2
i +

U dr2

V − 2m
+

N+ε∑
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r2 + a2
i

Ξi
dµ2

i

−
g2

W (1 + g2r2)

(N+ε∑
i=1

r2 + a2
i

Ξi
µi dµi

)2
,

N+ε∑
i=1

µ2
i = 1

W ≡
N+ε∑
i=1

µ2
i

Ξi
, U ≡ rε

N+ε∑
i=1

µ2
i

r2 + a2
i

N∏
j=1

(r2 + a2
j ) ,

N+ε∑
i=1

µ2
i = 1

V ≡ rε−2 (1 + g2r2)
N∏
i=1

(r2 + a2
i ) , Ξi ≡ 1− g2a2

i

Satisfies Rµν = −(D − 1)g2 gµν in D = (2N + 1 + ε) dimensions (ε = 0 or
ε = 1.).



Simplification By a Jacobi Transformation

The black hole metrics in their original form are difficult and cumbersome to
work with, because of the use of the set of direction cosines µi as coordinates,
subject to the constraint

∑
i µ

2
i = 1. For example, there is no convenient

vielbein basis.

A major simplification results if we solve the constraint using a Jacobi trans-
formation (Chen, Lü and CNP):

µ2
i =

∏n−1
α=1(a2

i − y2
α)∏′n

k=1(a2
i − a2

k)
, D = 2n+ 1 or D = 2n

(
∏′ means omit the zero factor in the product.)

An added bonus is that generalising to include NUT parameters is now im-
mediate (as it was in D = 4 once the Kerr metric was written in the Carter-
Plebanski form).



“These Black Holes May Contain NUTS”

ds2 =
n∑

µ=1

{Uµ
Xµ

dx2
µ +

Xµ

Uµ

[ W

1− g2x2
µ

dt−
n−1∑
i=1

γi

a2
i − x2

µ

dφi

]2}
D = 2n

where

Uµ =
∏′n

ν=1
(x2

ν − x2
µ) , Xµ = −(1− g2x2

µ)
n−1∏
k=1

(a2
k − x2

µ)− 2Mµ xµ

W =
n∏
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(1− g2x2
ν) , γi =

n∏
ν=1

(a2
i − x2

ν)

ds2 =
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µ=1

{Uµ
Xµ

dx2
µ +

Xµ

Uµ

[ W

1− g2x2
µ

dt−
n∑
i=1

a2
i γi

a2
i − x2

µ

dφi

]2}
−
∏n
k=1 a

2
k∏n

µ=1 x
2
µ

[
W dt−

n∑
i=1

γi dφi

]2
D = 2n+ 1

with

Xµ =
(1− g2x2

µ)

x2
µ

n∏
k=1

(a2
k − x2

µ) + 2Mµ

Mn is the mass parameter. Ma, for 1 ≤ α ≤ n− 1, are NUT parameters.



Example: Five-Dimensional Kerr-NUT-AdS

In five dimensions, after a further coordinate transformation, the Kerr-NUT-
AdS metric can be written as

ds2
5 = (x+ y)

(dx2

4X
+
dy2

4Y

)
−

X

x(x+ y)
(dt+ y dφ)2 +

Y

y(x+ y)
(dt− x dφ)2

+
a2b2

xy

(
dt− xy dχ− (x− y)dφ

)2

where

X = (x+ a2)(x+ b2)(1 + g2x)− 2mx , Y = −(a2 − y)(b2 − y)(1− g2y)− 2` y

The generalisation to D = 2n+ 1 ≥ 7 follows the same pattern.

The presence of the NUT parameter ` here is actually illusory. In D = 2n+ 1
dimensions, although one can ostensibly have n− 1 NUT parameters, one of
them can always be removed by coordinate transformations.



Example: Six-Dimensional Kerr-NUT-AdS

In six dimensions, after further linear coordinate transformations, we can write
the Kerr-NUT-AdS metric as

ds2
6 =

(x2 − y2)(x2 − z2)dx2

X
+

(y2 − x2)(y2 − z2)dy2

Y
+

(z2 − x2)(z2 − y2)dz2

Z

+
X

(x2 − y2)(x2 − z2)
[dt+ (y2 + z2)dψ1 + y2z2dψ2]2

+
Y

(y2 − x2)(y2 − z2)
[dt+ (x2 + z2)dψ1 + x2z2dψ2]2

+
Z

(z2 − x2)(z2 − y2)
[dt+ (x2 + y2)dψ1 + x2y2dψ2]2

where

X = −(1− g2x2)(a2 − x2)(b2 − x2)− 2M x

Y = −(1− g2y2)(a2 − y2)(b2 − y2)− 2L1 y ,

Z = −(1− g2z2)(a2 − z2)(b2 − z2)− 2L2 z

Cohomogeneity-3 metric with rotations a and b, mass M , and two NUT
charges L1 and L2.

The metrics in D = 2n ≥ 8 follow a similar pattern.



Charged Rotating Black Holes in Higher Dimensions

In four dimensions, the generalisation of the Kerr solution to include electric
charge is rather straightforward. No exact solutions describing charged ro-
tating black holes solutions of the pure Einstein-Maxwell equations in higher
dimensions have been found. L =

√
−g(R− 1

4
F 2 − Λ)

If one extends the Einstein-Maxwell system to the bosonic sector of an ap-
propriate supergravity theory, then exact solutions are known. In fact, in the
case of zero cosmological constant (i.e. ungauged supergravity), the intro-
duction of electric charges is a purely mechanical procedure. One uses global
symmetries of the theory to generate charged solutions from uncharged ones.
(Extensively implemented by Cvetic and Youm.)

With a non-vanishing cosmological constant (gauged supergravity), the solution-
generating technique fails, since there are no longer global symmetries. Brute
force calculations have succeeded in various cases (Chong, Cvetic, Lü, Mei,
CNP), including, for example, the general solution in five-dimensional minimal
gauged supergravity. The relevant bosonic theory is described by

L =
√
−g (R− 1

4
Fµν F

µν + 12g2) +
1

12
√

3
εµνρσλ Fµν FρσAλ

The solution has four parameters, characterising the mass, the charge and
the two independent angular momenta:



ds2
5 = −

∆θ [(1 + g2r2)ρ2dt+ 2qν] dt

Ξa Ξb ρ2
+

2q νω

ρ2
+

f

ρ4

(∆θ dt

ΞaΞb

− ω
)2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ

+
r2 + a2

Ξa
sin2 θdφ2 +

r2 + b2

Ξb

cos2 θdψ2 ,

A =

√
3q

ρ2

(∆θ dt

Ξa Ξb

− ω
)
,

where

ν = b sin2 θdφ+ a cos2 θdψ ,

ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb

,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ , Ξa = 1− a2g2 , Ξb = 1− b2g2 ,

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ , f = 2mρ2 − q2 + 2abqg2ρ2

The four conserved charges (mass, electric charge and angular momenta) are

E =
mπ(2Ξa + 2Ξb −Ξa Ξb) + 2πqabg2(Ξa + Ξb)

4Ξ2
a Ξ2

b

, Q =

√
3πq

4Ξa Ξb

Ja =
π[2am+ qb(1 + a2g2)]

4Ξ2
a Ξb

, Jb =
π[2bm+ qa(1 + b2g2)]

4Ξ2
b Ξa



Further Generalisation in Five Dimensions

In four dimensions, the Plebanski-Carter form of the Kerr-NUT-AdS metric
admits a further generalisation, by Plebanski and Demianski, where a confor-
mal factor is introduced:

ds2
4 =

1

(1− xy)2

{
−
X(dτ + y2dψ)2

x2 + y2
+
Y (dτ − x2dψ)2

x2 + y2
+ (x2 + y2)(

dx2

X
+
dy2

Y
)
}

This is Einstein for certain polynomials X(x) and Y (y). Describes rotating
AdS black holes with mass, NUT charge and acceleration. (General Type D.)

Since we can now write the higher-dimensional rotating AdS black holes with
NUT charges in a form analogous to Carter and Plebanski, it is natural to
seek the analogous further generalisation.

Introduction of an overall conformal factor no longer gives any non-trivial
extensions. We find only one higher-dimensional case where a related trick is
successful: D = 5 Ricci-flat metrics (Lü, Mei and CNP):

ds2
5 =

1

(1− xy)2

[x− y
4X

dx2 +
y − x
4Y

dy2 +
X (dφ+ ydψ)2

x(x− y)
+
Y (dφ+ xdψ)2

y(y − x)

]
+
a0

xy

(
dφ+ (x+ y)dψ + xydt

)2

is Ricci flat, provided that X and Y are given by

X = a0 + a3 x+ a2 x
2 + a1 x

3 + a0 x
4

Y = a0 + a1 y + a2 y
2 + a3 y

3 + a0 y
4

Contain Myers-Perry BH and 1-rotation Black Ring as special cases. Gener-
ically, they describe genuine D = 5 Taub-NUT type solutions (periodic time).
A static limit describes black holes with lens-space boundary and horizon.



The Einstein Condition in Higher Dimensions

In d dimensions, the Riemann tensor has 1
12
d2(d2 − 1) components, while the

Ricci tensor has 1
2
d(d + 1). Thus the Einstein equation Rij = λgij constrains

the full Riemann curvature less and less as d increases. (In d = 3 it determines
the Riemann curvature completely.)

This is one reason why the solution space gets richer as the dimension in-
creases. An instructive illustration is provided by looking at Einstein metrics
on group manifolds.

Consider a simple compact Lie group G whose algebra is generated by Ta, with
[Ta, Tb] = f cab Tc. Then if g is in G, we defined left-invariant 1-forms σa by

g−1 dg = σa Ta , satisfying dσa = −1
2
fabc σ

b ∧ σc

These are invariant under the left action GL of G: g −→ Ag.

For any group G, we can construct the bi-invariant metric (necessarily Ein-
stein)

ds2 = tr (g−1 dg)2 = σa σa

Except for the three-dimensional case G = SU(2) (or SO(3)), it is known that
every compact simple Lie group admits at least one additional inequivalent
homogeneous Einstein metric, which is invariant under GL but not under the
full GR (D’Atri and Ziller). Beyond this result, not much is known in general.



Einstein Metrics on Group Manifolds

The general left-invariant metric on G can be written as

ds2 = xab σa σb

where xab is a symmetric constant tensor. The Einstein equations Rab = λ gab
give a system of coupled polynomial equations for the xab.

Although in principle it is just a mechanical exercise to obtain these equations,
it is just too complicated in general to try to solve them, even for the first
example beyond SU(2), namely SU(3) (eight dimensional).

In recent work (Gibbons, Lü, CNP), we looked at three low(ish) dimensional
examples, SU(3), SO(5) and G2. By making simplifying ansätze for the choice
of xab, inspired by symmetries of subgroups, we were able to obtain new
Einstein metrics on SO(5) and G2, over and above the two known metrics. In
total, we obtained 4 inequivalent Einstein metrics on SO(5), and 6 on G2.

How can we be sure two Einstein metrics are inequivalent? A very useful
technique is to construct dimensionless scalar invariants from the curvature.
Two convenient ones are

I1 = λV 2/d , I2 = |Riem|2 λ−2

where V is the volume of the d-dimensional group manifold. We can take
V =

√
det(xab). If one of these invariants is different for two Einstein metrics,

then the metrics are guaranteed to be inequivalent.

I have recently been looking a bit more systematically at Einstein metrics on
the SO(n) group manifolds. The record so far is 16 inequivalent Einstein
metrics on SO(10). By looking at examples a pattern emerges, indicating
how the number might in general grow with the dimension.



Einstein Metrics on SO(n)

We can take the left-invariant 1-forms to be LAB (= −LBA), satisfying dLAB =
LAC ∧ LCB. The following gives a (presumably incomplete) set of restricted
metric ansätze that yield Einstein metrics:

1. The bi-invariant metric ds2 = σa σa

2. Metrics adapted to the SO(p)×SO(q) subgroup, p+q = n, with p ≥ 3 and
q ≥ 3. Each distinct such subgroup yields 3 inequivalent Einstein metrics
within the class

ds2 = x1

∑
SO(p)

L2
ij + x2

∑
SO(q)

L2
ab + x3

∑
pq

L2
ia

3. Higher factorisations into subgroups such as SO(p)× SO(q)× SO(r) with
p+ q + r = n and p, q, r ≥ 3.

ds2 = x1

∑
SO(p)

L2
ij + x2

∑
SO(q)

L2
ab + x3

∑
SO(r)

L2
αβ + x4

∑
p,q

L2
ia + x5

∑
p,r

L2
iα + x6

∑
q,r

L2
aα

4. Grassmannian-type subgroups, such as where A = (1,2, i) and

ds2 = x1

∑
L2

1i + x2

∑
L2

2i + x3

∑
L2
ij + x4L

2
12

There are 3 further inequivalent Einstein metrics in this class.

The count so far is

SO(5) SO(6) SO(7) SO(8) SO(9) SO(10)
4 5 7 8 10 16



Einstein Metrics on Spheres

The “floppiness” of the Einstein equations in higher dimensions is actually
quite large. As shown by C. Bohm, any sphere Sd with d ≥ 5 admits an
infinite number of Einstein metrics. We can take d = 5 as an example.

The standard metric on S5 can be written as

ds2 = dr2 + sin2 r dΩ2 + cos2 r dΩ̃2 , 0 ≤ r ≤
π

2

where dΩ2 and dΩ̃2 are the metrics on a pair of unit 2-spheres.

Bohm’s metrics, which have cohomogeneity 1, are constructed by making the
ansatz

ds2 = dr2 + a(r)2 dΩ2 + b(r)2 dΩ̃2

and solving the Einstein equations for the functions a(r) and b(r). These are

a′′

a
+

2a′b′

ab
+

(a′2 − 1)

a2
+ λ = 0 ,

b′′

b
+

2a′b′

ab
+

(b′2 − 1)

b2
+ λ = 0 ,

(a′2 − 1)

a2
+

(b′2 − 1)

b2
+

4a′b′

ab
+

3λ

2
= 0 .

The desired solutions have r1 ≤ r ≤ r2, and for regularity at the endpoints
they must satisfy essentially the same boundary conditions as sin r and cos r:

a(r1) = 0 , a′(r1) = 1 , b(r1) = b0 , b′(r1) = 0 ,
a(r2) = a0 , a′(r2) = 0 , b(r2) = 0 , b′(r2) = −1 .



The equations for a and b cannot be solved explicitly, and Bohm gave an
“epsilon and delta” analysis proving the existence of a countable infinity of
solutions satisfying the boundary conditions.

In (Gibbons, Hartnoll, CNP), we studied the solutions numerically. Here are
some plots
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The sequence continues, ad infinitum...

These Einstein metrics on Sd with d ≥ 5 can replace the usual round-sphere
metric in higher-dimensional black holes. It seems they all have negative
Lichnerowicz modes, and thus the “Bohm black holes” will be unstable.

Just as the usual S5 can be analytically continued to give five-dimensional de
Sitter spacetime dS5, one can also analytically continue the Bohm metrics to
give Lorentzian-signature Einstein metrics that generalise dS5. They appear
to be unstable to decay into the standard dS5. The Bohm metrics have a
totally-geodesic hypersurface, allowing them to be viewed as real tunnelling
geometries for creating Lorentzian Bohm metrics “from nothing.”



Further Remarks

• Looking at general relativity in higher dimensions opens up many new av-
enues for investigation, including non-standard horizon topologies (black
rings, ...).

• No analytical results exist for charged rotating black holes in pure Einstein-
Maxwell theory; black rings in an asymptotically AdS background; black
rings in higher than five dimensions.

• String theory and M-theory provide a framework within which the inves-
tigation of higher-dimensional general relativity becomes important. For
example, Ricci-flat metrics in dimensions D ≤ 11, and Einstein metrics in
D = 5 and D = 7 (AdS/CFT correspondence).

• The Einstein equations provide less of a constraint on the geometry in
higher dimensions. In consequence, there can be more Einstein metrics
on a given topology in higher dimensions. Some explicit examples in-
clude multiple homogeneous Einstein metrics on group manifolds, and
countable infinities of inhomogeneous Einstein metrics on spheres and de
Sitter-like spactimes.

• Understanding GR in higher dimensions can also provide interesting in-
sights into what is generic versus what is particular to four dimensions.


