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Abstract

@ Quantum entanglement lies at the heart of quantum
information theory, with applications to quantum
computing, teleportation, cryptography and
communication. In the apparently separate world of
quantum gravity, the Bekenstein-Hawking entropy of black
holes has also occupied center stage.

@ Here we describe a correspondence between the
entanglement measures of qubits in quantum information
theory and black hole entropy in string theory.
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Schwarzschild

@ 1972 PhD thesis problem: generate tree graphs for the
Schwarzschild solution (Salam’s bet with Bondi) and then
include loop corrections. Puzzled to discover that with
point source

927" = (r)

16772M0 5
r
even tree graphs divergent!

@ Solution: Spherical shell of pressure-free dust
167 My
2

91/2T00 = rié(r —¢)
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Renormalize

@ Absorb infinity at e = 0 into a mass renormalization

@ Note that in isotropic coordinates
€= 2¢ “f

M=M-3~

and

Bondi: “equivalence principle”
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Quantum corrections to Schwarzschild

@ One-loop corrections

__q.2GM hG2M
Joo = P o 3

For CFT loops: 45ma = 12Ny + 3N 2 + Np
@ Fast forward 25 years: R-S braneworld

—_1+ZGM+27L2 L—LGS
oo = r 3r3 G

@ AdS/CFT miracle: For U(N) super-Yang-Mills 3ra = 2N?
and iN? = 7L3/2Gs, so D = 4 quantum result same as
D = 5 classical result.
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Qubits

Two qubits

@ The two qubit system Alice and Bob (where A,B=0,1) is
described by the state

V) = aag|AB)
= 800‘00> + dap1 |01> + a10|10> + a ‘11>.
@ The bipartite entanglement of Alice and Bob is given by
TAB = 4|det ,0A| = 4|det aAB|2,

where
pa = Trg|V)(V|

@ 74p is invariant under SL(2)4 x SL(2)g, with aas
transforming as a (2, 2), and under a discrete duality that
interchanges A and B.



Qubits

Two qubits: examples

@ Example, separable state:

V) = —5100) + —[o1)
a8 =0
@ Example, Bell state:
W) = —[00) + —=[11)
25
a8 = 1

@ EPR “paradox”



Qubits

Three qubits

The three qubit system Alice, Bob and Charlie (where
A, B, C = 0,1) is described by the state

|V) = aapc|ABC)
= ap00|000) + ago1/001) + ag19/010) + ap11|011)
+ a100|100> + a101|101> + a110|110> + aq11 |111>.
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Qubits

Cayley’s hyperdeterminant

@ The tripartite entanglement of Alice, Bob and Charlie is
given by
Tagc = 4|Det aapc,

@ Det aypc is Cayley’s hyperdeterminant

1
Det aABC — _ E €A1 A2€B1 82501 04602 036A3A4€BgB4

* 8A,B;,Cy AA,B,Cr QA3 B3C3 A4 B4 Cy
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Qubits

Symmetry

@ Explicitly

Det apgc =

o011 + 3018510 + 1001 T o011
— 2(a0008001a1108111 + 800080108101 111
+ doood1008011@111 + Ao01801081018110

+ @o1210080118110 + 8010&10080118101)

+ 4(ao00@011a1018110 + 001801081008111)-

@ ltis invariant under SL(2)4 x SL(2)g x SL(2)¢, with asgc
transforming as a (2, 2, 2), and under a discrete triality that
interchanges A, B and C.
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Qubits

Local entropy

Another useful quantity is the local entropy Sa, which is a
measure of how entangled A is with the pair BC:

Sp = 4det pa = TA(BC)
where p4 is the reduced density matrix

pa = Trge|W) (V]

and with similar formulae for B and C.
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Qubits

Tangles

Tangles

TAB TAC
TABC

TBC

@ 2-tangles 74, T8¢, and T¢a give bipartite entanglements
between pairs in 3-qubit system

@ 3-tangle 745¢ is a measure of the genuine 3-way
entanglement:

TABC = TA(BC) — TAB — TCA
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Qubits

Entanglement classes

Entanglement classes

Class TA(BC) TB(AC) T(AB)C TABC
A-B-C 0 0 0 0
A-BC 0 >0 >0 0
B-CA >0 0 >0 0
C-AB >0 >0 0 0

w >0 >0 >0 0
GHZ >0 >0 >0 =0
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Qubits

LOCC

@ Local Operations and Classical Communication=LOCC

@ Two states are said to be LOCC equivalent if and only if
they may be transformed into one another with certainty
using LOCC protocols. Reviews of the LOCC paradigm
and entanglement measures may be found in
Plenio:2007,Horodecki:2007.
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Qubits

Orbits

@ Two states of a composite quantum system are regarded
as LOCC equivalent if they are related by a unitary
transformation which factorizes into separate
transformations on the component parts (Bennett:1999),
so-called local unitaries. The Hilbert space decomposes
into equivalence classes, or orbits under the action of the
group of local unitaries.

@ In the case of n qubits the group of local unitaries is given
(up to a global phase) by [SU(2)]".
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Qubits

SLOCC

@ Stochastic Local Operations and Classical
Communication=SLOCC

@ Two quantum states are said to be SLOCC equivalent if
and only if they may be transformed into one another with
some non-vanishing probability using LOCC operations
(Bennett:1999, Dur:2000). The set of SLOCC
transformations relating equivalent states forms a group
(which we will refer to as the SLOCC equivalence group).

@ For n qubits the SLOCC equivalence group is given (up to
a global complex factor) by the n-fold tensor product,
[SL(2, C)]", one factor for each qubit (Dur:2000). Note, the
LOCC equivalence group forms a compact subgroup of the
larger SLOCC equivalence group.
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Qubits

Complex qubit parameters

@ For unnormalized three-qubit states, the number of

parameters [ ]
needed to describe inequivalent states or, what amounts to

the same thing, the number of algebraically independent
invariants [ ] is given by the
dimension of the space of orbits

C2 x C? x (2
U x SU2) x SU(2) x SU)

namely, 16 — 10 = 6.
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Qubits

Real qubit parameters

@ However, for subsequent comparison with the STU black
hole [
], we restrict our attention to states with
real coefficients aapgc.
@ In this case, one can show that there are five algebraically
independent invariants: Det a, Sa, Sg, S¢c and the norm
(W|W) , corresponding to the dimension of

R? x R? x R?
SO(2) x SO(2) x SO(2)

namely, 8 — 3 = 5.
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Qubits

5 parameter state

@ Hence, the most general real three-qubit state can be
described by just five parameters.

@ |t may conveniently be written

|W) = —N3cos20|001) — N|010) + Nasinfcosd|011)—
N;|100) — Nzsinfcosf|101) + (N + N3Sin29)|1 11).
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Qubits

Representatives

Representatives from each class are:
@ Class A-B-C (product states):

No|111).
@ Classes A-BC, (bipartite entanglement):
Np|111) — N;|100),

and similarly B-CA, C-AB.
@ Class W (maximizes bipartite entanglement):

—N;[100) — N>|010) — N3|001).
@ Class GHZ (genuine tripartite entanglement):
No|111) — N{|100) — N>|010) — N5|001).
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STU black holes

STU BLACK HOLES
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STU black holes
STU model

The STU model consists of N = 2 supergravity coupled to
three vector multiplets interacting through the special Kahler
manifold [SL(2)/SO(2)]3:

1
_ -0
Sstu 167G /e [

<R + %(Tr [oM7 oMy | +Tr [omg oMy )> x1

1 1
+xdn Adn— E*H[S] A H[3] — 7*F:9r[2] A\ (MT@MU) F3[21:|

2

1 1 R(S)
Ms = ()(%(S) rsr2> ete.
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STU black holes

STU parameters

@ A general static spherically symmetric black hole solution
depends on 8 charges denoted qo, g1, G2, g3, P°, p', P?, P°,
but the generating solution depends on just8 —3 =5
parameters [

], after fixing the action of the isotropy
subgroup [SO(2)]°.
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STU black holes
Black hole entropy

@ Black hole entropy S given by the one quarter the area of
the event horizon.

@ The STU black hole entropy is a complicated function of
the 8 charges :

(S/7)? = ~(p-q)?
+4|(p'a1)(PPq2) + (P 1) (PPa3) + (P°as3) (PP a2)
+qop' P°P? — P°q1 G205
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STU black holes

Qubit correspondence

@ By identifying the 8 charges with the 8 components of the
three-qubit hypermatrix asgc,

%1 [ a0 ]
P’ —aoo1
p? —4ao10
p? _ | ~&i00
o airi
a1 aio
Q2 aio1
93 L do11
one finds that the black hole entropy is related to the

3-tangle as in

s
S = my/|Det aapc| = 5 V/7ABC
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STU black holes

BH/qubit correspondence

@ The measure of tripartite entanglement of three qubits
(Alice, Bob and Charlie), known as the 3-tangle 74g¢, and
the entropy S of the 8-charge STU black hole of
supergravity are both given by Cayley’s hyperdeterminant.
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STU black holes

Further developments

@ Further papers have written a more complete dictionary,
which translates a variety of phenomena in one language
to those in the other:
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STU black holes

Further developments contd

@ The attractor mechanism on the black hole side is related
to optimal local distillation protocols on the QI side.

@ Moreover, supersymmetric and non-supersymmetric black
holes corresponding to the suppression or
non-suppression of bit-flip errors .

30/80



N = 8 GENERALIZATION

N = 8 GENERALIZATION
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N = 8 case

Supergravity in D < 11

D  scalars/vectors G H

10A 1/1 SO(1,1,R)

10B 2/0 SL(2,R) ( ,R)

9 3/3 SL(2,R) x SO(1,1,R) SO(2,R)

8 7/6 SL(2,R) x SL(3, R) SO(2, ) SO(3,R)
7 14/10 SL(5,R) SO(5,R)

6 25/16 SO(5,5,R) SO(5,R) x SO(5,R)
5 42 /27 Ess)(R) USP(8)

4 70/ 28 Ez¢7y(R) SU(8)

3 128/ 0 Eg(s)(R) SO(16, R)

Table: The symmetry groups (G) of the low energy supergravity
theories with 32 supercharges in different dimensions (D) and their
maximal compact subgroups (H).
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Embeddings

The N =2 STU solution can usefully be embedded in

@ N = 4 supergravity with symmetry SL(2) x SO(6,22),
where the charges transform as a (2, 28).

@ N = 8 supergravity with symmetry E;(7), where the
charges transform as a 56.

Remarkably, the same five parameters suffice to describe these
56-charge black holes.
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N = 8 case

E7(7) and seven qubits

E7(7) and seven qubits
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@ There is, in fact, a quantum information theoretic
interpretation of the 56 charge N = 8 black hole in terms of
a Hilbert space consisting of seven copies of the
three-qubit Hilbert space. It relies on the decomposition
Exz) D [SL(2))
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N = 8 case

Decomposition of the 56

@ Under
Ez7y O
SL(2)ax SL(2)gx SL(2)cx SL(2)px SL(2)gx SL(2)Fx SL(2)g
the 56 decomposes as
56 —
(2,2,1,2,1,1,1)
+(1,2,2,1,2,1,1)
+(1,1,2,2,1,2,1)
+(1,1,1,2,2,1,2)
+(2,1,1,1,2,2,1)
+(1,2,1,1,1,2,2)
+(2,1,2,1,1,1,2)
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Seven qubits

@ It admits the interpretation of a tripartite entanglement of
seven qubits, Alice, Bob, Charlie, Daisy, Emma, Fred and

George:

aasp|ABD
+ bgce|BCE
+ ccpr|CDF
+ dpeg| DEG
+ eera|EFA)
+ frge |FGB)
+ 9cacl|GAC)

~ ~—

<z -
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E; Entanglement

The following diagram may help illustrate the tripartite
entanglement between the 7 qubits

E7 Entanglement

38/80



N = 8 case

Cartan invariant

@ The entanglement measure given by Cartan’s quartic E7(7)
invariant.

I = ~Te(()?) + ;Tr(xy)? — 4 (PE(X) + PE(y))

x¥ and y,, are again 8 x 8 antisymmetric charge matrices

39/80



M

0 —ayyr —byyr —Ci11 —ditr —e11 —f11 —Gi1
a1 0 foor  dioo —Coto  Goto —bioo —€oot
bi11 —fho1 0 Joo1 €00 —doto  doto  —Cioo
Ci11 —dioo  —Joo1 0 a1 fioo —€o10  boto
di11 Coto  —€100 —aoot 0 boot 9100  —Toto
€111 —Goto  doto  —fioo —boor O Coot @100
fit1 - bioo  —aoo €10  —G100 —Coof 0 Qoo+

9111 €01 Cioo  —boto  foro  —@100 —oo1 0
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0

dooo
booo
Cooo
dooo
€000
fooo
9ooo

—3&a000

€110

—booo
fi10
0
—9d110
—€011
1ot
—a101
Cot1

Y=

—Coo0
Qo1

di10
0
—ai1o
—To11

€101
—bio1

—0ooo
—C1o1
€011

aitio
0

—b110

—9o11
fro1

—€000
9101
—dio1
for1
bi1o
0

—C110
—ao11

—fooo
—bo11
ai01
—€101
Jot11

Ci10
0

—0di10

41/80



Schematically,

Iy =a"+b*+c*+d*+e*+*+ g

+2[a‘2b2 + &c® 4+ &d® + & + PP +  ag?
+ bPc® 4+ bPPd? + bPe? 4+ b2 4+ bPgP

+ c?d? + ke + PP 4+ ?gP

+ d?e® + d*ff + d?g?

+ 62f2 + 9292

i fzgz]

+ 8[abce + bcdf + cdeg + defa + efgb + fgac + gabd] ,

where a* is Cayley’s hyperdeterminant etc
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@ Remarkably, because the generating solution depends on
the same five parameters as the STU model, its
classification of states will exactly parallel that of the usual
three qubits. Indeed, the Cartan invariant reduces to
Cayley’s hyperdeterminant in a canonical basis.

43/80



OCTONIONS AND THE FANO PLANE

OCTONIONS AND THE FANO PLANE
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Fano plane

An alternative description is provided by the Fano plane which has
seven points, representing the seven qubits, and seven lines (the
circle counts as a line) with three points on every line, representing
the tripartite entanglement, and three lines through every point.

Fano plane

45/80



N = 8 case
Octonions

The Fano plane also provides the multiplication for the
imaginary octonions:

A B C D E F G
A D G -B F -E -C
B -D E A -C G —-F
c -G -E F B -D A
D B -A  -F G C —-E
E -F C -B -G A D
F E -G D -C A B
G C F —A E -D -B
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CLASSIFICATION

CLASSIFICATION
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N = 8 case

CLASSIFICATION

@ Furthermore, one can relate the classification of
three-qubit entanglements to the classification of
supersymmetric black holes as in the following table:
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Class | S Sg Sc Deta || Black hole | Susy
A-B-C 0 0 0 0 small 172
A-BC 0 >0 >0 0 small 1/4
B-CA | >0 0 >0 0 small 1/4
C-AB | >0 >0 0 0 small 1/4
W >0 >0 >0 0 small 1/8
GHZ | >0 >0 >0 <0 large 1/8
GHZ | >0 >0 >0 >0 large 0

Table: Classification of three-qubit entanglements and their

corresponding D = 4 black holes.
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Wrapped D3-branes and 3 qubits

Wrapped D3-branes and 3 qubits

WRAPPED D3-BRANES AND 3 QUBITS
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Wrapped D3-branes and 3 qubits

Microscopic analysis

String interpretation:
@ N = 4 supergravity with symmetry SL(2) x SO(6, 22) is the
low-energy limit of the heterotic string compactified on T°.
@ N = 8 supergravity with symmetry E;(7) is the low-energy
limit of the Type IIA or Type lIB strings, compactified on T
or M-theory on T7.

@ Black holes are now 0-branes obtained by wrapping
p-branes around p of the compactifying circles.
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Wrapped D3-branes and 3 qubits

Stringy version

@ The stringy version of the STU black hole is not unique
since there are many ways of embedding the STU model
in string/M-theory, but a useful one from our point of view is
that of four D3-branes wrapping the
(579), (568), (478), (469) cycles of T® (intersecting over a
string) with wrapping numbers Ny, Ny, No, Ns.

@ The wrapped circles are denoted by a cross and the
unwrapped circles by a nought as shown in the following
table:
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Wrapped D3-branes and 3 qubits

4 5|6 7|8 9| macro charges | micro charges | |ABC)
X 0|X O0|x O o° 0 |000)
0O X|0 X[X O a1 0 |110)
O X|[X 0[O0 X Qo —Njzsinfcosd | [101)
X 0|0 X|0 X g3 N3sinfcosf | |011)
0 X|0 x|0 X 9 No + N3sin?6 | |111)
X 0|X 0[0 X —p! —Nacos?d | |001)
X 0|0 X|x O —p? —N> |010)
0 X|x o|lx o —p° — N, |100)

Table: Three qubit interpretation of the 8-charge D = 4 black hole
from four D3-branes wrapping around the lower four cycles of T8 with
wrapping numbers Ny, Ny, No, N3.
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Wrapped D3-branes and 3 qubits

Fifth parameter

@ The fifth parameter 6 is obtained by allowing the N5 brane
to intersect at an angle which induces additional effective
charges on the (579), (569), (479) cycles

[
]

@ The microscopic calculation of the entropy consists of
taking the logarithm of the number of microstates and
yields the same result as the macroscopic one |

].
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Wrapped D3-branes and 3 qubits

Qubit interpretation

@ To make the black hole/qubit correspondence we associate
the three T2 with the SL(2)4 x SL(2)g x SL(2)¢ of the
three qubits Alice, Bob, and Charlie. The 8 different cycles
then yield 8 different basis vectors |ABC) as in the last
column of the Table, where |0) corresponds to xo and |1)
to ox.

@ We see immediately that we reproduce the five parameter
three-qubit state |W):

|W) = —N3c0s20|001) — Np|010) + Nasinfcosd|011)—
N;|100) — Nasinfcosf|101) + (Ng + Nasin?0)[111).
@ Note from the Table that the GHZ state describes four

D3-branes intersecting over a string, or groups of 4
wrapping cycles with just one cross in common.
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Wrapped D3-branes and 3 qubits

lIA and 1IB

@ Performing a T-duality transformation, one obtains a Type
IIA interpretation with zero D6-branes, Ny DO-branes,
N;, No, N5 D4-branes plus effective D2-brane charges,
where |0) now corresponds to xx and |1) to oo.
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SUMMARY
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Summary

Summary

@ Our Type 1IB microscopic analysis of the D = 4 black hole
has provided an explanation for the appearance of the
qubit two-valuedness (0 or 1) that was lacking in the
previous treatments: The brane can wrap one circle or the
other in each T2.

To wrap or not to wrap? That is the qubit.

@ The number of qubits is three because of the number of
extra dimensions is six.

@ The five parameters of the real three-qubit state are seen
to correspond to four D3-branes intersecting at an angle.
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Wrapped M2-branes and 2 qutrits

Wrapped D3-branes and 3 qubits

WRAPPED M2-BRANES AND 2 QUTRITS
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Wrapped M2-branes and 2 qutrits

Quitrit interpretation

@ All this suggests that the analogy between D = 5 black
holes and three-state systems (0 or 1 or 2), known as
qutrits [ ], should
involve the choice of wrapping a brane around one of three
circles in T3. This is indeed the case, with the number of
qutrits being two.

@ The two-qutrit system (where A,B =0,1,2) is described

by the state
‘W) = aAB]AB>,

and the Hilbert space has dimension 32 = 9.
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Wrapped M2-branes and 2 qutrits

@ The bipartite entanglement of Alice and Bob is given by the
2-tangle
TaB = 27det PA = 27]det aABIZ,

where p4 is the reduced density matrix
pa = Trg|V)(V|.

@ The determinant is invariant under SL(3)4 x SL(3)g, with
aap transforming as a (3, 3), and under a discrete duality
that interchanges A and B.
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Wrapped M2-branes and 2 qutrits

D = 5 black hole

@ For subsequent comparison with the D = 5 black hole, we
restrict our attention to unnormalized states with real
coefficients asp.

@ There are three algebraically independent invariants : 74z,
C> (the sum of the principal minors of pag) and the norm
(V|W¥), corresponding to the dimension of

R3 x RS
SO(3) x SO(3)

namely, 9 — 6 = 3.
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Wrapped M2-branes and 2 qutrits

D = 5 black hole

@ Hence, the most general two-qutrit state can be described
by just three parameters, which may conveniently taken to
be three real numbers Ny, Ny, N>,.

W) = Np|00) + Nq[11) + N»|22)

@ A classification of two-qutrit entanglements, depending on
the rank of the density matrix, is given in the following table:
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D = 5 table

Wrapped M2-branes and 2 qutrits

Class Co 7ag || Black hole | Susy
A-B 0 0 small 172
Rank2Bell | >0 0 small 1/4
Rank3Bell | >0 >0 large 1/8

Table: Classification of two-qutrit entanglements and their
corresponding D = 5 black holes.
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Wrapped M2-branes and 2 qutrits

D = 5 black hole

@ The 9-charge N = 2, D = 5 black hole may also be
embedded in the N = 8 theory in different ways. The most
convenient microscopic description is that of three
M2-branes wrapping the (58), (69), (710) cycles of the T®
compactification of D = 11 M-theory, with wrapping
numbers Ny, N1, N> and intersecting over a point
[

]

@ To make the black hole/qutrit correspondence we associate
the two T2 with the SL(3)4 x SL(3)p of the two qutrits Alice
and Bob, where |0) corresponds to xo0, |1) to oxo and |2)
to oox.The 9 different cycles then yield the 9 different basis
vectors |AB) as in the last column of the following Table:
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Wrapped M2-branes and 2 qutrits

D = 5 table
56 10 || macro charges | micro charges | |AB)
X 0 0 p° No |00)
0 X 0 p' N, 111)
00 X p? No |22)
X 0 0 Jod 0 |01)
0 X X p* 0 112)
0o 0 p° 0 |20)
X 0 X Joid 0 |02)
0 X 0 p’ 0 110)
0o 0 Joid 0 121)
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Wrapped M2-branes and 2 qutrits

@ We see immediately that we reproduce the three
parameter two-quitrit state |V):

W) = Np|00) + Ni[11) + N»|22)

@ The black hole entropy, both macroscopic and microscopic,
turns out to be given by the 2-tangle

S=2ry/ ]det aAB],

and the classification of the two-qutrit entanglements
matches that of the black holes .

@ Note that the non-vanishing cubic combinations appearing
in det aapg correspond to groups of 3 wrapping cycles with
no crosses in common, i.e. that intersect over a point.
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Wrapped M2-branes and 2 qutrits

Embeddings

@ There is, in fact, a quantum information theoretic
interpretation of the 27 charge N = 8, D = 5 black hole in
terms of a Hilbert space consisting of three copies of the
two-qutrit Hilbert space. It relies on the decomposition
Ese) O [SL(3)]® and admits the interpretation of a bipartite
entanglement of three qutrits, with the entanglement
measure given by Cartan’s cubic Eg ) invariant.

@ Once again, however, because the generating solution
depends on the same three parameters as the 9-charge
model, its classification of states will exactly parallel that of
the usual two qutrits. Indeed, the Cartan invariant reduces
to det aag in a canonical basis.
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Wrapped M2-branes and 2 qutrits

Summary

@ Our M-theory analysis of the D = 5 black hole has
provided an explanation for the appearance of the quitrit
three-valuedness (0 or 1 or 2) that was lacking in the
previous treatments: The brane can wrap one of the three
circles in each T°3.

@ The number of qutrits is two because of the number of
extra dimensions is six.

@ The three parameters of the real two-quitrit state are seen
to correspond to three intersecting M2-branes.
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Wrapped M2-branes and 2 qutrits

RECENT DEVELOPMENTS
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Wrapped M2-branes and 2 qutrits

Recent developments

@ Whether or not there is an underlying physical connection,
this two-way process teaches us new things about both
black holes and Ql.

@ Recent examples are:
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Wrapped M2-branes and 2 qutrits

@ Correspondence between a three-qubit state vector ¢ and
a Freudenthal triple system W over the Jordan algebra

CoCoC:
Y = appc|ABC > <
_ ( arnn (30017301073100)) (7.1)
(a110, @101, @011) anoo ’ '

the structure of the FTS naturally captures the SLOCC
classification.
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Wrapped M2-branes and 2 qutrits

Class Rank FTS rank condition
vanishing non-vanishing

Nul 0 v -

ABC 1 3T(W, W, ) + {V, o}w "

ABC 2a T(W, v, v) A

B-CA 2b T(W, v, V) v

C-AB  2c T(V, v, V) e
w3 q(v) T(W, v, V)

onz 4 — q(V)

Table: The entanglement classification of three qubits as according to
the FTS rank system
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Wrapped M2-branes and 2 qutrits
Orbits

Table: Coset spaces of the orbits of the 3-qubit state space
C? x C? x C? under the action of the SLOCC group [SL(2, C)]°.

Class FTS Rank Orbits dim
Separable 1 [ ng;(g’)]g)f o 4
Bi-separable 2 m 5
" 5 seof
GHz 4 [SL(2. 0P 7

[SO(2, C))?
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Wrapped M2-branes and 2 qutrits

New duality for black holes; arXiv:0903.5517

@ It is well-known that the quantized charges x of 4D black
holes may be assigned to elements of an integral
Freudenthal triple system (FTS) whose automorphism
group is the corresponding U-duality. The FTS is equipped
with a quartic form A(x) whose square root yields the
lowest order black hole entropy.

@ We show that a subset of these black holes, for which A(x)
is necessarily a perfect square, admit a Freudenthal dual
with integer charges &, for which X = —x and A(X) = A(x)
Some, but not all, of other discrete U-duality invariants are
also Freudenthal invariant.

@ Similar story in 5D where we introduce a Jordan dual A*,
for which A** = A with cubic norm N(A*) = N(A), whose
square is necessarily a perfect cube.
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Octonions and supersmmetry

@ Inthe NV = 8 case, the 56 of E7(7) decomposes as
56 — (2,12) + (1,32), (7.2)

under
E7(7y © SL(2) x SO(6, 6) (7.3)
where SL(2) is the electric-magnetic S-duality and
SO(6, 6) is the T-duality group.
@ The (2,12) is identified as the NS-NS sector where as the
(1,32) is associated with the R-R charges.
@ In the Fano plane picture going from NS to NS+RR is

going from quaternions to octonions. Suggestive of hidden
role of octonions in M-theory?
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Superqubits

@ We provide a supersymmetric generalisation of n quantum
bits by extending the LOCC entanglement equivalence
group [SU(2)]" to the supergroup [uOSp(2|1)]” and the
SLOCC equivalence group [SL(2, C)]" to the supergroup
[OSp(2]1)]".

@ We introduce the appropriate supersymmetric
generalisations of the conventional entanglement
measures for the cases of n=2 and n= 3.

@ In particular, super-GHZ states are characterised by a
non-vanishing superhyperdeterminant.
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