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Prof Robert Pound smelled a rat in 1975
Carlton Caves got it right in 1980















Classes of sources and searches
• Compact binary inspiral: template search

– BH/BH
– NS/NS and BH/NS

• Low duty cycle transients: wavelets,T/f clusters
– Supernova
– BH normal modes
– Unknown types of sources

• Externally triggered searches
– Gamma bursts
– EM transients

• Periodic CW sources
– Pulsars
– Low mass x-ray binaries (quasi periodic)

• Stochastic background
– Cosmological isotropic background
– Foreground sources : gravitational wave radiometry

inspiral S5
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Gravitational waves from 
compact binaries

• LIGO is sensitive to gravitational waves from binary 
systems with neutron stars & black holes
– Waveforms depend on masses and spins. 

● Binary neutron 
stars

– Estimates give 
upper bound of 1/3 
yr in LIGO S5

● Binary black holes
– Estimates give 

upper bound of 
1/yr in LIGO S5

P. Brady




S2 Horizon Distance
1.5 Mpc

Binary Neutron Stars: S5 Search (Preliminary)

Optimum polarization and 
orientation SN > 8

Averaged over 
polarization  and
sky position

P. Brady, G. Gonzalez
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Binary Black Holes
S5 Search

Image: R. Powell

binary black hole
horizon distance

• 3 months of S5 
analyzed

• Horizon distance 
versus mass for BBHAverage over run

130Mpc

1 sigma variation

binary neutron star 
horizon distance

P. Brady



Burst search: a time-frequency method

• Compute time-frequency decomposition in a Fourier or wavelet basis
• Threshold on power in a pixel; search for clusters of pixels
• Basic assumption: multi-interferometer response consistent with a plane 

wave-front incident on network of detectors:
– use temporal coincidence of the 3 interferometer’s  ‘loudest pixels’
– correlate frequency features of candidates (time-frequency domain analysis)
– check consistency of the signal amplitude
– test the list of coincident event candidates for waveform consistency

(correlation) between signals from three LIGO interferometers.
• End result of analysis pipeline: number of triple coincidence events

E. Katsavounidis



Preliminary detection efficiency and 
upper limit reach for initial part of S5
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E. Katsavounidis



Possible supernova explosion model
• Burrows, Livne, Dessart, Ott, Murphy (ApJ 2006) and 

Ott, Burrows, Dessart, Livne (PRL 2006)
– Axisymmetric simulations with non-rotating progenitor
– In-falling material eventually drives oscillations of the core
– Hundreds of ms after the bounce and lasting several 

hundred ms

Ott, Burrows, Lessart, Livne, PRL 2006

E. Katsavounidis



GRB 070201

• Feb 1, 2007: short hard γ
burst

• Observed by five spacecraft
• Location consistent with 

M31spiral arms (0.77 Mpc)
• At the time of the event, 

both Hanford instruments 
were recording data (H1, 
H2), while others were not 
(L1, V1, G1)

M. Landry



Inspiral and burst analyses

Off-
source

Off source   
On source

(180 s)

• On source data: 180s around 
GRB

• Off source, for background 
est.
– inspiral: -14h, +8h
– burst: -1.5h, +1.5h

• Some (.9%) off source data 
excluded, based on data 
quality cuts obtained from 
playground studies (e.g. 
excess seismic noise, digital 
overflows, hardware injections 
of fake signals)

• Assume gravitational waves 
travel at the speed of light

M. Landry



Inspiral search - GRB 070201
• Matched template analysis, 1MO < m1 < 3MO, 1MO < m2 < 40MO

• H1 ~ 7200 templates, H2 ~ 5400 templates, obtain filter SNR
• Require consistent timing and mass parameters between H1, H2
• Additional signal-based tests : χ2, and r2 veto
• SNR and χ2 combined into effective SNR ρeff

• No gravitational wave candidates found
• Compact binary in M31 excluded at 99% confidence

background. results.

M. Landry



Summary of Periodic Sources and Detection Sensitivity

M.A. Papa



Isotropic Stochastic Background

56.5 10GW
−Ω < ×

S4 result
Ap. J., 659 (2007) 082003

(astro-ph/0608606):

Bayesian 90% U.L.

Fake signal injected
into LHO, LLO 4km
instruments, then 
recovered



CMB Task Force Report (2006)

Estimates for a Cosmological Background of Gravitational Waves



Gravitational Wave “Radiometer”



Program of detector improvements

• Major steps between initial and advanced LIGO
– Increase laser input power 10 to 180 watts in stages
– Incorporation of an output mode cleaner
– Output optics and electro-optics chain in vacuum
– DC (carrier offset) “modulation” technique
– Reduction in thermal noise

• Steel wire to fused quartz ribbon suspension elements
• Lower mechanical dissipation optical coatings
• Larger fused silica test masses : 10 kg to 40 kg

– Improved active seismic isolation – extend sensitivity to 15Hz
– Tunable dual recycling interferometer configuration
– Quantum limited operation over significant band 
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Advanced LIGO modes of operation

Peter Fritschel



Projections for Advanced LIGO : sensitivity and sources











Hubble Space Telescope

R. Genzel



Power and signal recycling configuration
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