

Five Years of WMAP

Ben Gold (JHU, visiting UMinn)

ADM-50: A Celebration of Current GR Innovation

Nov 7 2009

Q band

W banc

-200

 $T(\mu K)$

+200

WMAP Science Team

JHU

Chuck Bennett (PI)
Ben Gold
David Larson

Princeton

Norm Jarosik
Lyman Page
Kendrick Smith
David Spergel

NASA

Mike Greason
Bob Hill
Gary Hinshaw
Al Kogut
Nils Odegard
Janet Weiland
Ed Wollack

Alumni Chris Barnes Rachel Bean Olivier Dore Hiranya Peiris

-200

K band

Elsewhere

Jo Dunkley (Oxford)
Mark Halpern (UBC)
Eiichiro Komatsu (UT Austin)
Michele Limon (Columbia)
Stephan Meyer (Chicago)
Mike Nolta (CITA)
Greg Tucker (Brown)
Ned Wright (UCLA)

W band

+200

WMAP: a mm-wave differencing telescope

Scan pattern and sky coverage

Why mm?

Axel Mellinger

Why mm?

Why mm?

COBE DIRBE

Why mm? Cosmic Microwave Background

COBE DMR+WMAP

Why difference?

CMB fluctuations

What does WMAP see?

CMB: Plasma Acoustic Oscillations

- perturbation theory on a FLRW background
- plasma physics at accessible energies
- result: acoustic waves
- phase is important

1yr WMAP

(CMB is 1% polarized, polarization is 180° out of phase, cross-correlation is thus 90° out of phase)

3yr WMAP

The Concordance Model

- Six parameter curve fits hundreds of independent data points!
- No need (yet) for other interesting parameters
- 2 initial conditions, 2 particle params, 1 astro param, 1 geometric param, plus upper limits/assumptions about others

<u>-</u>			
_	Parameter	5 Year Mean (V	VMAP only)
γ/b ratio	$100\Omega_b h^2$	2.273 ± 0.062	~1/4 atom per m ³
matter densit	$\Omega_c h^2$	0.1099 ± 0.0062	~1.2 GeV per m ³
distance to LS	Ω_{Λ}	0.742 ± 0.030	$\sim (1.8 \text{ meV})^4$
tilt	n_s	$0.963^{+0.014}_{-0.015}$	potential shape
pol'n bump	au	0.087 ± 0.017	~9% rescattered
amplitude	$\Delta^2_{\mathcal{R}}$	$(2.41 \pm 0.11) \times 10^{-1}$	⁻⁹ potential shape

18

The Concordance Model

What set the initial conditions?

- needs to produce density perturbations "in phase"
- needs to be roughly scale invariant
- would be nice to solve horizon and curvature problems
- might be nice to clean up weird relics (monopoles?)

Inflation?

Inflation

- early phase of accelerating expansion solves horizon, flatness, and relic issues
- for inflation to end, use a dynamical entity: a scalar field
- quantum fluctuations become initial density perturbations, with zero velocity
- there are more implications from this model!

Inflation parameters

- gravity wave amplitude is proportional to energy scale of inflation
- large enough gravity waves cause large-scale density fluctuations themselves
- further constraints require polarization

Inflation parameters

(WMAP only) 3yr to 5yr is not just \sqrt{t} !

Inflation parameters

- N < 70 for post-Planck inflation
- ϕ^4 very disfavored!
- r-n_s combo pushing on theory

Beyond the concordance model

- tensor (gravitational wave) amplitude
- non-Λ dark energy
- scale-invariant scale-invariance (running of the index)
- axionic/other non-inflationary generation of perturbations
- neutrino mass

Non-A Dark energy

assume flatness

Dark energy

don't assume flatness

CMB alone constrains "geometry", combination of curvature and dark energy

Non-A Dark energy

don't assume flatness

Alternative dark matter

What if neutrinos weren't there?

- Neutrino background is cosmologically significant!
- N_{eff} > 0 with 99.5% confidence
- Limit comes primarily from the unique effects of a weakly interacting relativistic "fluid"
- Explaining the CMB without neutrinos would push χ^2 up 8.2, push H₀ > 75, and break concordance

Neutrino mass limits

 $\Sigma m_{\nu} < 0.67 \text{ eV (with BAO)}$

Non-Gaussianity

("Gaussian" here means fluctuations at different wavenumbers are statistically independent)

or

- CMB is a gaussian random field to 0.1%
- $-9 < f_{NL} \text{ (squeezed)} < 111 (95\% CL)$
- $-151 < f_{NL}$ (equilateral) < 253 (95% CL)
- 27 < f_{NL} (squeezed) < 147 (95% CL) [Yadav & Wandelt 2008]
- -18 < f_{NL} (squeezed) < 80 (95% CL) [Curto et al. 2009]
- limits improve rapidly as noise and foregrounds come down

Future

- WMAP: 7yr being analyzed, 8yr data for certain, more if funded
- Planck: in progress!
- polarization B-modes -> strong limits on tensor/ scalar ratio

ESA, LFI & HFI consortia, background Axel Mellinger

Other stuff

Jansson et al. (2009)

Hansen et al. (2009)

Kogut et al. (2009)

Dobler et al. (2009)