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Forward
* From the non-renormalization theorem Point of VIEW, this

storg is about Potentia”g clivergent structures that need
to be written as subsurface integrals of the full on-shell

superspace of a gjven theorg, aka “F terms.”

+ The whole c]uestion is which F terms are allowed by the
Ward identities and which ones are ruled out bg nonN~

renormalization theorems.

o Of course, eventua”y, one will reach a looP order where

D terms, i.e. full superspace integrals) are Possible, and
these do not appear to be ruled out bﬂ suPersymmetry,
although one can contemplate the roles of other

sgmmetries such as dualitg sgmmetries.



Ultraviolet Divergcnces N Gravit9
® Simple power counting 18 gravitg and suPergravitg
theories leads to a naive Aegree of clivergence

A= (D—2)L+2

in D sPacetime dimensions. So, for D=4, 1.3, one

exl:)ects A =8 . In dimensional regularization onlg

logarlthmlc Axvergences are seen ( 1 Poles e=D—4),

sO 8 powers O1C momentum Woulcl ]’wave to come out onto

the extemal lmes OF such cllagram.



o Local suPersgmmetrg implies that the pure curvature
part of such a D=4, §~loop clivergent structure must be
built from the square of the Bel-Robinson tensor

Deser, Kag & K.S5.5

/ vV —8 T,uvpcsT'UVpG ,  Lyvps = R,uav Roaop + *RyavB *Rpoccsﬁ

* Thisis clirectlg related to the of? corrections in the
5ul:>er5tri ng, ettective action, except that in the stri ng
context such contributions occur with finite coetficients.
The question remains whether such string theorg

contributions clevelop Poles in (o) 'as one takes the

zero—-slope limit o/ — 0 and how this bears on the

ultraviolet Properties of the corresponding field theorg.

Berkovi’cs; Green, Russo & Vanhove
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) T]’we consequences of suPersgmmetrg for ttme ultraviolet
structure are not restricted, however, simplg to the
requirement that counterterms be suPersgmmetric

invariants.

o There exist more Powertul “non-renormalization

theorems,” the most famous of which excludes infinite

renormalization within D=4 N= supersymmetry of chiral

invariants, given in N=| superspace ]33 integrals over halt

the superspace:

/dZGW((I)(x,O,é)) Do =0



o The strengtlﬁ of a gi\/en suPersgmmetric non-renormalization

theorem clepends on the extent of inearlg realizable, or

“off-shell” sul:)ersgmmetrg. This is the extent of
suPersgmmetrg for which the algebra can close without use

of the equations of motion.

* Knowing the extent of this off-shell supersymmetry IS trickg,

and may involve formulations (e.g. harmonic suPerSPace)

with infinite numbers of auxiliarg fields.
Galperin, lvanov, Kalitsin, Ogievetskg & Sokatchev

+ For maximal N=4 SuPer Yang—-Mi ls and maximal N=8

suPergravity, the |inearlg realizable supersymmetry has been
known since the 1980’s to be at least half the full
supersymmetry of the theorg.
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° The ‘Cu” extent 01[ at

160:’9’5 supersgmmetrgj even though it

may be non-linear, a

leading counterterms have to be invariant under the original

unrenormalized 5ul:>er59mmetr9 transrcormations.

TS Assuming that 1/2 supersgmmetrg IS linearlg realizable and

so restricts the infinities since the

requiring gauge and supersymmetry invariances, Preclictions

were derived for the first divergent looP orders in maximal

(N=4 & 16 suPercharge) SYM and (N=8 & 32 sc.) SUGRA.:

Howe, K.5.5 & Townsend

Max. SYM first divergencesj

Dimension D

10

8

7

6

D

4

assuming halt susy off-shell

1

(8 supercharges)

Max. SUGRA first clivergences)

assuming halt susy off-shell

Loop order L 1 2 3 4 00
Gen. form O°F* | F* | 9°F* | 9°F* | F* | finite
Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 | 3
Gen. form OPRY | O'RY | RY | O*R* | OR* | R* | R*

(16 supercharges)




Unitaritg—-—basecl calculations

Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower,

Perelstein, Roiban, Rozowskg et al.

o Within the last decade, there have been signiﬁcant

advances in the comPutation of loop corrections in

quantum field theorg.

+ These Aevelol:)ments include the organization of
amplitudes into a new kind of Perturbation theorg
starting with maximal helicitg Violating ampli‘cudes (MHV)

then next-to-MHV (NMHV), efc.

° Theg also incorPorate a sl:)eciﬁc use of dimensional
regularization togcther with a clever use of unitarit9

cutts ng rules.



* Norma”g, one thinks of unitarity relations such as the

oPtical theorem as giving information onlg about the

imaginarg Parts of amplituc

es. However, if one keeps all

orders in an exPansion ne=0D—4 then IOOP integrals

like [d4+9)p rc:c]uire integrancls to have an additional

momentum clepenclcnce f(s) — f(s)s™ /% wheresis a

momentum invariant. Then,

since s7¢/2 =1 — (¢/2)In(s) + ...

and In(s) = In(|s|) + imO(s), one can learn about the real

Parts of an amp itude bﬂ retaining imaginarg terms at

OFCIC!” € .

o This gives rise to a Proceclure for the cut construction of

higher—-lool:) cliagrams.
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° Keg inks between maximal su[oergravitg and maximal SYM

are the Kawai~l_ewe”en~’lye (KLT) relations between
open- and closed~string amplitudes. These give rise to
tree-level relations between field-theoretic max. SUGRA

and max. SYM ﬁechtlﬁeorQ amplitudes, e.g.

M3™¢(1,2,3,4) = —is12AT(1,2,3,4) AY°¢(1,2, 4, 3)

* Combining this with the unitaritg»-basecl calculations, in
which all aml:)htucles are ultimatelg reduced to integrals
over Products of tree amplitucles, one has a way to obtain
higher—-loop sul:)ergravit9 amplitudes from SYM
amplitucles.

11



* Inthis way, a ditferent set of anticipatecl first looP

orders for ultraviolet clivergences arose using the

unitaritg—-basecl aPProach, circa 1998-2000:

Max. SYM first clivergences)
earlg unitarit3~based

Preclictions

Max. SUGRA first
clivergences, earlg
unita rit9~based

Prcdictions

Dimension D

10

Loop order L 1 1 2 3 6 o0

Gen. form O?F* | I | 92F* | 0?F* | O°F* | finite
Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form OPRY | OVRY | RY | O*R* | O°R* | O°R* | O*R*

+ These anticipa’cions were based on iterated Z~Particle

cuts, however. Full calculations can reveal different

behavior, however.
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* An imPortant de\/elopment was the 5ubsequent completion of

Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

the §~|ool:> calculation:

2 3 9 3 2 3
/ /
X\ X
1 4 A 4 A 4
Normal I:eynman (a) (b) ()
Cl/ l l , 2 3 2\ 3
lagram caicu ation 2. 3
/ /
of these would 1 /x X\4 L I
, 1 4 1 4
involve about 1020 (d) (e) 63)
2 3 2. 1, 14 ,3 3
terms KR z 2 /
L/ LY £6+15 Yh A
Ll l7V £4 | l;lov l8 /12“ l§ “ll
1 4 1 4 Y

(2) () o
TS Diagrams (a~g) can be evaluated using iterated two—-l:)article

cuts, but cliagrams (h) & () cannot. The result is finite at L=3
in D=4, but a surl:)rize was that the finite parts have an

unexpectecl SIX powers cnc momentum that come out onto the

external lines, gving a d°R* leacling ettective action correction.
1



Counterterm analysis
o The §~|ool:> N=8 suPergravitH calculation is a remarkable tour

de force, but does it indicate that there are “miracles” that

cannot be understood from non-renormalization theorems?

o Al 5ingle~trace SYM clivergences in the various dimensions

D can be understood using non-renormalization theorems.

* Recentlg it has been realized that N=4 SYM can also be
quantized with 9=8+ off-shell 5upersgmmetries) at the Price

O‘F maﬂi‘FCSt Loreﬂtz ir]\/a ria Nnce. Baulieu, Berkovits, Bossard & Martin

o A similar formulation for maximal suPergravit9 exists with

17=16+1 of-shel suPcrsgmmetries in D=2. Indications are that

a related construction rules out the L=%, D=4 5G

COu nte rte rm. Bossarcl, Howe & K.5.5 4



o The 8+1 max. SYM and the 16+1 max. SG formalisms allow

one now to counter the eligibilit9 of counterterms invo ving

integration over half the corresponcling full on-shell

superspaces, L.e. 8 integrations for SYM and 16 for SG.
These two “half BPS” counterterms have similar D=4

structures:

Algyy = / (d*0d*0)105tr(0") 105 105 0;; H 6oFsu

Alg; = /(d86d86)232848(W4)232848 232848 W;ins H 70 of SU(8)

Kallosh
Howe, K.5.5. & Townsend

XS /—\ssuming that non-renormalization theorems work
similarlg to all other known cases, the “half susy +”
formalisms arejust enough to rule out the 1 /2BPS F * SYM

and R* SG counterterms.
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Meanwhile) the "r—-loop calculation has
now been done (Mag 2009).

Bern, Carrasco, Dixon, Johansson & Roiban

- 12 111 , 5
1< >:3 -f @ + 46 more to[:)ologies
L =

I

* Result:  wior — (5) stuM™ Y Zc is ultraviolet
Ss 1=1

finite in D=4 (as expected) and in D=5 (unexpccte&)

¢ One bottle O{: wine has been lost
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5ul:>er Yang~l\/\i||5 analogue

Bern, Carrasco, Dixon, Johansson & Roiban

* A surPrizing thing about the D=5 1 =4 max.

suPergravity di\/ergence cancellation is that its naive

Aegree of Aivergence A = 14 < 95 R% is the same as

for D=6, =3, where a clivergence does occur.

o Thereis a simi

ar Puzzle in max. SYM, contrasting D=/,

| =2 with D=6, =3 (naive degree of &ivergence

A = 10 < 9*>F?*) in which case the 1’1ig|’16:r dimensional

case also has a clivergence but the

case doesn’t.

ower dimensional

i/



* Inthe SYM case, one has to clis‘:inguish between singlc—-

trace operators tr(9%F4), for which there are cli\/ergences In

both D=/ and D=6 cases, and double-trace oPerators

tr(0F2)tr(0F?) for which the D=6 clivergence is absent.

o This aPParentlg similar Pair of double-trace D=7 and D=6

max. SYM candidate counterterms, with onlb the higﬁer~

dimension counterterm actua”g occuring with an infinite
coemcﬁcient) looks very similar to the max. supergravitg Pair
of candidates at D=6, =% (imqnitg occurs) and D=5 =4

(inﬁnit9 does not occur).
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Algebraic Renormal

Dixon;

ization Piguet

Howe, Lindstrom & White;

& Sore”a; Hennaux;

Stora; Baulieu & Bossard

+ Another al:)l:)roach to analgzing the divergences 18

suPersgmmetric gauge t

neories begins with t

he Callan-

nganzik equation for the renormalization o

:the

lLagrangjan as a oPerator insertion, governing, e.g., mixing
with the half-BPS operator § 4 = tr(F*). | etting the

classical action be S(z)) t

Ou
where ng =4, 2, 1 for

the anomalous dimensio

D=5, 6, 8.

n 74 .

ne C~Z equation in dimension D

BN +,y(4)gzn<4> (SW . T+,

From this one learns that (n4) — 1)84) = 1) so the beta
function for the S¥ = tr(F*) operator is determined ]39

19



* Combining the supersymmetry generator with a commuting
spinor Parameter to make a scalar ol:)erator Q =¢€0, the
exl:)ression of SUSY invariance for a D-form densitg in D~
dimensions is QLp+dLp_1=0. Combining this with the
SUSY algebra Q? = —i(&y'e)d, and using, the Poincaré
| emma, one finds Lieye) Lo +SQzLlp-1+dLp =0 .

* Hence, one can consider cocycles of the extended
nilpotent ditferential d + S Q)= T lizre) acting on formal
form-sums Ip+Lp1+Lpr+---.

o The suPersymmetrg Ward identities then imply that the
whole cocycle must be renormalized in a coherent way. In

order for an oPerator ke S@ to mix with the classical

action § (2), their cocycles need to have the same structure.



Ectoplasm

Gates, Grisaru, Knut-Whelau, & Siegel
Berkovits and Howe
E)ossard, Howe & KSS

o The construction of supersgmmetric invariants 1s

isomorphic to the construction of cohomologica”g

nontrivial closed forms in superspace:

I = [, o"Lpisinvariant (where o*is a Pu||~bac|< to the

“boclg” subspace My

Y it Lpis a closed form in

superspace, and is nonvanishing it L p is nontrivial.

o Revisit the BRST formalism, but now include all gauge

sgmmctries (in Partic

cﬂigeomorl:)hisms) N

ular inclu&ing sPatial

he nilpotent BRST oPerator 5. The

invariance condition -

Cor LpissLp +doLp_1 =0 where dg

is the usual bosonic exterior derivative. Since s2 = 0 and s

anticommutes with do

,one obtains sSLp_1 +doLp_2=0.



* Sothe colﬁomological Problem reappears in BRST guise,
but with the commuting spinor 3 rcPIacecl bﬂ the
commuting suPerSHmme‘crg ghost. One needs to stuclg
the cohomologg of the nilpotent oPerator 0 =s+d,

whose cochains Lp_q 4 are (D-g) forms with ghost

number q, i.e.(D-q) forms with q spinor indices. The spinor
indices are tota”g symmetric since the supersymmetry

ghost 1S commuting.

* For gauge-invariant supersgmmetric integrancis, this
establishes an isomorphism between the cohomology of
closed forms in superspace (a|<a “ectoplasm”) and the

constuction of BRST invariant counterterms.
22



5 u PC 'S Pa ce COl"lOF"I OI O g}j Bonora, Pasti & Tonin

TS l:lat superspace ]’las a stanclarcl bas:s omc invariant | Forms
E* = dx® — —dea(ra)aﬁeﬁ
EY = de¢
dual to which are the superspace covariant derivatives (Oa, Do)

o There is a natural bi~graciing of superspace forms into even

and odd Parts: Q" = Dpepyg QP

* Corresponciinglg, the flat superspace exterior derivative

splits into three parts with bi~gradings (1,0), (O,1) & (-1,2):
d = do(l, O) + dl((), 1) -+ t()(—l, 2)

bosonic der. fermionic der. torsion

do N 5’M dl < Da
where for a (P,c]) form in flat superspace, one has

(tow)ag---apﬁl---ﬁq+2 ~ (Fal)(5152wa1...ap53...5q+2)
25



o The nilpotcnce of the total exterior derivative d imPlies the

relations
te = 0
t()dl T Cllto = 0
di + todo + dotg = 0

o Then, sincedLp = 0, the lowest dimension non\/anisl’)ing

cochain (or ‘generator”) Lp—q,q must satis% toLp—gq =0,

sOLp_q.q belongs to the t cohomologg group HtD_q’q.

* Starting with the to cohomologg groups H;™%, one then

defines a sl:)inorial exterior derivative d; : HP? — gPat!

139 ds|w] = [diw], where the [ 1] brackets denote H; classes.

24



Cederwall, Gran, Nilsson & Tsimpis
Howe & TsimPis

» One finds that d,is nilpotent, d2 =0, and so one can

define spinorial cohomologg groups Hr4 = Hy (HP7) -

The groups H4 gjve multi pure spinors.
o This formalism gives a way to reformulate the algebraic
renormalization cohomologg in terms of spinorial
cohomologg. The lowest dimension cochain, or

generator, of a counterterm’s suPerForm will be ds closed,

i.e. it must be an element of HP~94,

* Solving ds|/Lp—g.q] =0 then allows one to solve for all

the higher components of Lpintermsof Lp_q.q.

25



Berkovits & Howe
o To see how this formalism works, consider N=1

suPersgmmetrg in D=10. Corresponding to the K
sgmmetries of strings and §~branes, we have the D=10

Gamma matrix identities tol'12 =0 tol'52=0 .

° The seconcl cnc these IS rele\/ant to the construction og

d»-closecl Forms in D=10. One may have a generator
Lss =152Mjs

where ds[Mys] =0 . The simplest example of such a

form corresponds to a full superspace integral over S:
X P 11P5 5 5
Magy = Tagy,s,--85(D7) 7S

where T 0 B~.51-+-55 15 constructed from the D=10 Gamma

matrices; it 1s tota”g symmetric in afy and tota“g

antisgmmetric in 0105,



* Under dimensional reduction, closed D forms reduce to

closed (D-1) Forms, so one obtains directlg the sequence

of Cocgcles corresl:)oncling to non-BPS invariants in

4<D<10 climensions) with generators Lp-ss ~ T'p-s52Mo3 .

+ Now consider the cocycle of the D=10 SYM T_.agrangian
tself. This is an example of a Chern-Simons form, based

on the closed 11-form w1, = [52trF?. In standard CS

, | B , ,
Fashlorw, this can be written as W1 = dZyg where Ziyis a

Potential form in D=10, but it also has the property that it
can be written as Wi = dK1o where Kio is gauge invariant;
its lowest component s Kg o .Thus, K10 — Z10 15 closed and

so can be used to construct an integratecl invariant.
27



o The 10-form /10 can be taken to be I's oQ3 where ()3 15
the Chern-Simons 3-form, dQsz = trF* .

o One finds that the lowest dimension cochain in the D=10
Lagrangian cocgcle has structure Ls5=1520Q03,1e 1t

IS omc the same structure as that 1Cor the a Fu” superspace

| ntegral counterterm.

* Consequentlg, full superspace intc—:gral cocgclcs have

the same structure as that o1c the _._.agrangian cocycle

and thus are not subject to a nonrenormalization

theorem.



* An example of a candidate counterterm which is
allowed bg this analgsis is the Fu”~sul:>ersl:>ace integral
of the Konishi operator tr(W, W,.) . This is relevant to

the single-trace clivergences in L=2, D=/ max SYM.
When evaluated on-shell, this Fu”»-supersl:)ace
exl:)ression integrates to zero in the abelian case, but

becomes a combination of tr(9?F*) and tr(F?®) in the

non-abelian case.

29



‘f:xamples of oPerators that are ruled out }39 the
ectoplasm/ algebraic renormalization analgsis are any
half-BPS counterterms, such as the tr(F*) or (tr(F?))?
counterterms. In D climensions, the generator
component of such a1/2 BPS cocgcle s an (0,D)

form of dimension 8-D/2.. Since the structure of this
cocgcle s different from than that of the lLagrangjan,

the Corresponding 1/2 BPS counterterm is illegal.

50



Double-trace SYM non-renormalization
» Similar analgsis of the D=7 tr(0F?)tr(9F?) L=2 double-

trace candidate shows that its lowest cocycle components

(~ ,
-exact terms, consistent

with the D=7 s5U(2) R-symmetry, thus |eavinga (2,5)

lowest dimension form like that of the classical

may be removed bg the addition o

|Lagrangjan. Thus, this structure is not Protectecl.

Bossard, Howe & K.5.5

o In D=6, however, the situation is different. The R-
symmetry is now SU (2)xSU2) and one finds that there is

1no trivial term that can be added to shorten the D=6
double-trace cocgcle so as to agree with the D=6
Lagrangian cocyc!e structure. Thus) the double-trace | =%

counterterm is ruled out in D=6. 5



Current outlook

)

No mysteries Persist in max. SYM: feld-theoretic non-

renormalization theorems explain all current calculationa
zation th olain all current caleulational

results.

Providing the D=6, 1.=3 vs D=5, | =4 max. suPergravitg
cases work similarly, the current SG calculational results

would also be understood Pure|9 within field theorg.

In D=5 max. SYM, the |.=6 double-trace counterterm
should similarlg be ruled out, and in D=4 max. SG, the
| =5 and L=6 counterterms should also be i”egal. So the

first allowed D=4 max. SG counterterms would be full-

superspace | ntegrals at LL.=/. Réleof duality? E, ->1=87 .



