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Forward
From the non-renormalization theorem point of view, this 
story is about potentially divergent structures that need 
to be written as subsurface integrals of the full on-shell 
superspace of a given theory, aka “F terms.”

The whole question is which F terms are allowed by the 
Ward identities and which ones are ruled out by non-
renormalization theorems.

Of course, eventually, one will reach a loop order where 

D terms, i.e. full superspace integrals, are possible, and 
these do not appear to be ruled out by supersymmetry, 
although one can contemplate the rôles of other 
symmetries such as duality symmetries.
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Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity 
theories leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one 
expects             . In dimensional regularization, only 
logarithmic divergences are seen (      poles,                     ), 
so 8 powers of momentum would have to come out onto 
the external lines of such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations

In 1948 Schwinger dealt with one-loop three-
point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations

Over the years, an intensive effort has gone
into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.

∆ = (D−2)L+2

∆ = 8
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Local supersymmetry implies that the pure curvature 
part of such a D=4, 3-loop divergent structure must be 
built from the square of the Bel-Robinson tensor

This is directly related to the        corrections in the 
superstring effective action, except that in the string 
context such contributions occur with finite coefficients. 
The question remains whether such string theory 
contributions develop poles in              as one takes the 
zero-slope limit               and how this bears on the 
ultraviolet properties of the corresponding field theory.

Deser, Kay & K.S.S
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The consequences of supersymmetry for the ultraviolet 
structure are not restricted, however, simply to  the 
requirement that counterterms be supersymmetric 
invariants.

There exist more powerful “non-renormalization 
theorems,” the most famous of which excludes infinite 
renormalization within D=4, N=1 supersymmetry of chiral 
invariants, given in N=1 superspace by integrals over half 
the superspace:

Z
d2θW (φ(x,θ, θ̄)) , D̄φ = 0
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The strength of a given supersymmetric non-renormalization 
theorem  depends on the extent of linearly realizable, or 
“off-shell” supersymmetry. This is the extent of 
supersymmetry for which the algebra can close without use 
of the equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, 

and may involve formulations (e.g. harmonic superspace) 
with infinite numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the linearly realizable supersymmetry has been 
known since the 1980’s to be at least half the full 
supersymmetry of the theory.

7

Galperin, Ivanov, Kalitsin, Ogievetsky & Sokatchev



The full extent of a theory’s supersymmetry, even though it 
may be non-linear, also restricts the infinities since the 

leading counterterms have to be invariant under the original 
unrenormalized supersymmetry transformations.

Assuming that 1/2 supersymmetry is linearly realizable and 
requiring gauge and supersymmetry invariances, predictions 
were derived for the first divergent loop orders in maximal 
(N=4 ↔ 16 supercharge) SYM and (N=8 ↔ 32 sc.) SUGRA:

Max. SYM first divergences, 
assuming half SUSY off-shell 
(8 supercharges)

Max. SUGRA first divergences, 
assuming half SUSY off-shell 
(16 supercharges)

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

1

Howe, K.S.S & Townsend

8

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 3
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1



Within the last decade, there have been significant 
advances in the computation of loop corrections in 
quantum field theory.

These developments include the organization of 
amplitudes into a new kind of perturbation theory 
starting with maximal helicity violating amplitudes (MHV), 

then next-to-MHV (NMHV), etc.

They also incorporate a specific use of dimensional 
regularization together with a clever use of unitarity 
cutting rules.

Unitarity-based calculations
Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, 

Perelstein, Roiban, Rozowsky et al.
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Normally, one thinks of unitarity relations such as the 
optical theorem as giving information only about the 
imaginary parts of amplitudes. However, if one keeps all 
orders in an expansion in                    , then loop integrals 
like                   require integrands to have an additional 

momentum dependence                                  , where s is a 
momentum invariant. Then, since                                         
and                                           , one can learn about the real 
parts of an amplitude by retaining imaginary terms at 
order     . 

This gives rise to a procedure for the cut construction of 
higher-loop diagrams.

10

s−ε/2 = 1− (ε/2)ln(s) + . . .

ln(s) = ln(|s|) + iπΘ(s)

ε

f(s)→ f(s)s−ε/2

ε = D − 4
∫

d(4+ε)p



Key links between maximal supergravity and maximal SYM 
are the Kawai-Lewellen-Tye (KLT)relations between 
open- and closed-string amplitudes. These give rise to 
tree-level relations between field-theoretic max. SUGRA 

and max. SYM field-theory amplitudes, e.g.

Combining this with the unitarity-based calculations, in 
which all amplitudes are ultimately reduced to integrals 
over products of tree amplitudes, one has a way to obtain 
higher-loop supergravity amplitudes from SYM 
amplitudes.

2.1 KLT Relations

The KLT relations are between tree-level amplitudes in closed and open string theories, and arise
from the representation of any closed-string vertex operator as a product of open-string vertex
operators,

V closed(zi, z̄i) = V open
left (zi) V

open
right(z̄i) . (2.1)

The left and right string oscillators appearing in Vleft and V right are distinct, but the zero mode mo-
mentum is shared. In the open-string tree amplitude, the zi are real variables, to be integrated over
the boundary of the disk, while in the closed-string tree amplitude the zi are complex and integrated
over the sphere. The closed-string integrand is thus a product of two open-string integrands. This
statement holds for any set of closed-string states, since they can all be written as tensor products of
open-string states. KLT evaluated the (n − 3) two-dimensional closed-string world-sheet integrals,
via a set of contour-integral deformations, in terms of the (n− 3) open-string integrals, and thereby
related the two sets of string amplitudes.

After taking the field-theory limit [7, 8], α′ki · kj → 0, the KLT relations for four-, five- and
six-point amplitudes are [4],

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4) Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5) Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5) Atree

5 (3, 1, 4, 2, 5) ,

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45A

tree
6 (1, 2, 3, 4, 5, 6)[s35A

tree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35)Atree
6 (2, 1, 5, 4, 3, 6)]

+ P(2, 3, 4) .

(2.2)

Here the Mn’s are the amplitudes in a gravity theory stripped of couplings, the An’s are the color-
ordered amplitudes in a gauge theory [27, 28], sij ≡ (ki + kj)2, and P(2, 3, 4) instructs one to sum
over all permutations of the labels 2, 3 and 4. The n arguments of Mn and An are the external
states j, which have momentum kj . The n-point generalization of eq. (2.2) [1, 4] is presented in
appendix A.

Each gravity state j appearing in Mn is the tensor product of the corresponding two gauge theory
states appearing in the An’s on the right-hand side of the equation. In particular, each of the 256
states of the N = 8 supergravity multiplet, consisting of 1 graviton, 8 gravitinos, 28 gauge bosons,
56 gauginos, and 70 real scalars, can be interpreted as a tensor product of two sets of the 16 states of
the N = 4 super-Yang-Mills multiplet, consisting of 1 gluon, 4 gluinos and 6 real scalars. (In string
theory, this correspondence may be understood in terms of the factorization of the closed string
vertex operator for each N = 8 state into a product of N = 4 open string vertex operators.) Thus
a sum over the N = 8 supergravity states can be interpreted as a double sum over a tensor product
of N = 4 super-Yang-Mills states.

4
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In this way, a different set of anticipated first loop 
orders for ultraviolet divergences arose using the 
unitarity-based approach, circa 1998-2000:

These anticipations were based on iterated 2-particle 
cuts, however. Full calculations can reveal different 
behavior, however.

Max. SYM first divergences, 
early unitarity-based 
predictions

Max. SUGRA first 
divergences, early 
unitarity-based 
predictions

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 1 1 2 2 2 3
Gen. form ∂6R4 ∂2R4 R4 ∂6R4 ∂2R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

1

12

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 ∂6R4 ∂4R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
BPS degree 1

4
1
2

1
4

1
4

1
4

1
4

Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5

BPS degree 0 0 1
2

1
4

1
8

1
8

1
4

Gen. form ∂12R4 ∂10R4 R4 ∂6R4 ∂6R4 ∂6R4 ∂4R4
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An important development was the subsequent completion of 
the 3-loop calculation:

Diagrams (a-g) can be evaluated using iterated two-particle 
cuts, but diagrams (h) & (i) cannot. The result is finite at L=3 
in D=4, but a surprize was that the finite parts have an 
unexpected six powers of momentum that come out onto the 
external lines, giving a          leading effective action correction.

2

FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

harmonic superspace [2]. Explicit computations show
that it is saturated through four loops [11, 13, 18, 20].

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is a
shorthand for the supersymmetrization of a particular
contraction of four Riemann tensors [4], and D denotes a
generic covariant derivative. The stronger bound (2), if
applied to N = 8 supergravity, would differ from eq. (1)
beginning at L = 3. It corresponds to a three-loop effec-
tive action beginning with D6R4, not D4R4. As the su-
pergravity finiteness bound (1) is based on only a limited
set of unitarity cuts [11], additional (stronger) cancella-
tions may be missed [13].

To study this issue, we use the unitarity method [12,
18] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai, Lewellen, Tye (KLT) [21]
tree-level relations between gravity and gauge theory am-
plitudes [11], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [15]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [22] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [11, 18], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [23]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various

3

4

3

4

3

4

22 2

3

1 4

3

3

1 4 1 4

1 4

3

1 4

3

1 4

3

2
2

22

111

2

2

FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.

Our computation proceeds in two stages. In the first
stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [11, 18]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.

In the second stage we use the KLT relations to
write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [11], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I(c) + 1

4I(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I(h) + 2I(i)

]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

Bern, Carrasco, Dixon, Johansson, Kosower & Roiban.

∂6R4

13

Normal Feynman 
diagram calculation 
of these would 
involve about 1020 
terms



The 3-loop N=8 supergravity calculation is a remarkable tour 
de force, but does it indicate that there are “miracles” that 
cannot be understood from non-renormalization theorems?

All single-trace SYM divergences in the various dimensions 
D can be understood using non-renormalization theorems.

Recently it has been realized that N=4 SYM can also be 
quantized with 9=8+1 off-shell supersymmetries, at the price 
of manifest Lorentz invariance.

A similar formulation for maximal supergravity exists with 
17=16+1 off-shell supersymmetries in D=2. Indications are that 
a related construction rules out the L=3, D=4 SG 
counterterm.

Counterterm analysis

Baulieu, Berkovits, Bossard & Martin

Bossard, Howe & K.S.S
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The 8+1 max. SYM and the 16+1  max. SG formalisms allow 
one now to counter the eligibility of counterterms involving 
integration over half the corresponding full on-shell 

superspaces, i.e. 8 integrations for SYM and 16 for SG. 
These two “half BPS” counterterms have similar D=4 
structures:

Assuming that non-renormalization theorems work 
similarly to all other known cases, the “half SUSY +1” 
formalisms are just enough to rule out the 1/2 BPS       SYM 
and       SG counterterms.

F4

R4

∆ISG =
Z

(d8θd8θ̄)232848(W 4)232848

∆ISY M =
Z

(d4θd4θ̄)105 tr(φ4)105
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&,, subject to the constraint (5.7). This constraint now implies the full non-linear 

field equations. Although the constraint on ~b~ i is non-linear, the constraint on the 

kernel remains linear because it has no free YM indices; this follows from the 

properties of covariant derivatives. Therefore,  the action (5.6) is an invariant. The 

off-shell action is still unknown; indeed, were we to relax the constraint on ~h~j to 

go off-shell, the action (5.6) would no longer be invariant. This suggests that no 

such off shell action exists in the absence of central charges. Other  arguments to 

this effect have previously been given in ref. [10]. 

As a warm up for N = 8 supergravity we will now consider an invariant quartic 

in ~b~ i. This is an on-shell counter term that can arise in gravity matter  systems. By 

using the special form of the action formula (4.6) we can construct the following 

invariant: 

f l'~[iil.lkt]lr~[pql.lr.*lt 
/" = d 4 x  ~ ~ L.ihkt.pq.rs , 

(5.8) 
t i i .k l .e , . rs  ~- (t~ii~kl~C)pqq~r~)ltl5 • 

The kernel is in the 105 representation of SU(4) and satisfies the required 

constraints as a consequence of (5.2): 

L-  ~ ; 0C- ~ .  (5.9) 

(ii) 8 > N >I 4 supergravity: for N = 4, 5 and 6 supergravity, (N = 7 actually has 

eight supersymmetries),  the on-shell theory is described by the complex superfield 

Wqkl which is in a totally antisymmetric representation of U(N),  and whose first 

components  are the physical scalars. They are subject to the constraints [11, 12] 

D, , iWik t , .  = 6(r~,.kt., 1, 

9, , ,  w,~,,,, = 9,~r, wi~,,~ ~, 
(5.10) 

which also imply the linearized field equations. The three loop counter term for 

these theories can be expressed as an action with a kernel of the form W 4, which 

contains the square of the BeI-Robinson tensor in its 0 expansion thus generalizing 

the result for N<~4 [13, 11, 5]. It is more convenient to use instead the spinor 

fields A,,~ik which also appear  in the superspace torsions of the full non-linear theories 

[11]. We can summarize the results by means of a single action formula 

I J 4  !'~1 ! .i i .i.~j.~r~ r...k I .k~12. kJ~  l 2 2 . . . . .  . . . .  ~] x l.J L.Iklll.k212.k313l~- ttll.1212.t313 (5.11) 

for which the kernel has the form, 

Kkf,~.ik~5"~'., '~ = ~,-rta~,,2,~--,,,,,2,~,,..~a ~t~ k,k2k~"~'d~+symmetrizations]. .  , . (5.12) 
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construct the N = 8 analogue of ( 5 . 8 ) :  

1" : f dax D[ir"i4]'[ir"i , t] l~lkt '"k4],[tr"14 ] 

>( t i  a...i4,h ...i4,k a ...k4,l l...14 • 

The kernel is 

Lil...i4dl.../4,kl...k4,tl...t 4 ~" ( Wil . . . i  4 Wjl.. . j4 Wkl . . . k  4 Wll. . .I  a )232848, 

and is in the 232848 representation of SU(8), 

L ~ 

(5.16) 

(5.17) 

The constraint to be satisfied by L, 

D L ~  

is guaranteed by the constraint (5.10) o n  Wiikl. An N = 8 three-loop counter term 

was previously constructed by Kallosh [5], but without manifest SU(8) invariance. 

An obvious question is now whether this counter term can be written in such a 

way that all scalars are covered by derivatives. Such a counter term is then a 

candidates for a linearized E(7) invariant counter term of the full non-linear theory 

[14]. Although the invariance W--* W + constant is not manifest in the way it was 

for N < 8 it is still there, as one can see by performing the 0 integrations (differenti- 

ations) in (5.16). The counter term is the square of the N = 8 Bel-Robinson superfield 

Bi~k~.~,., [15] 

Bqkl.pqr.* = ( Wijkl  Wpqrs ) 1764, ( 5 , 1 8 )  

which is in the 1764 representation of SU(8) 

13 ~ 

Therefore  on dimensional grounds the scalars must appear  in the x-space action 

in the form W2U]4W ~, (WDW)[]3(WDW), etc. By checking all such terms one 

can show that, up to total derivatives, all of them can be written such that the 

scalars appear  only as ~ W if the equations of motion are used. For example,  the term 

[( Wiikl  Wpqrs )1764r-[4 ( Wi' j 'k  'l' Wp,q,r,s, )176411 ( 5 . 1 9 )  

can be put in the form (c9 W) 4 by use of [] W = 0 and integration by parts. 

105 

232848 

φi j

Wi jkl

6 of SU(4)

70 of SU(8)

15

Kallosh
Howe, K.S.S. & Townsend



Meanwhile, the 4-loop calculation has 
now been done (May 2009).

Result:                                                       is ultraviolet 

finite in D=4 (as expected) and in D=5 (unexpected).

One bottle of wine has been lost. 

+ 46 more topologies

Bern, Carrasco, Dixon, Johansson & Roiban
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A surprizing thing about the D=5, L=4 max. 
supergravity divergence cancellation is that its naïve 

degree of divergence                                 is the same as 

for D=6, L=3, where a divergence does occur.

There is a similar puzzle in max. SYM, contrasting D=7, 
L=2 with D=6, L=3 (naïve degree of divergence 
                               ) in which case the higher dimensional 
case also has a divergence but the lower dimensional 
case doesn’t.

Super Yang-Mills analogue

17

Bern, Carrasco, Dixon, Johansson & Roiban

∆ = 14↔ ∂6R4

∆ = 10↔ ∂2F 4



In the SYM case, one has to distinguish between single-

trace operators                  , for which there are divergences in 
both D=7 and D=6 cases, and double-trace operators

                               for which the D=6 divergence is absent.

This apparently similar pair of double-trace D=7 and D=6 
max. SYM candidate counterterms, with only the higher-
dimension counterterm actually occuring with an infinite 
coefficient, looks very similar to the max. supergravity pair 
of candidates at D=6, L=3 (infinity occurs) and D=5, L=4 
(infinity does not occur).

tr(∂2F 4)
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tr(∂F 2)tr(∂F 2)



Another approach to analyzing the divergences in 
supersymmetric gauge theories begins with the Callan-
Symanzik equation for the renormalization of the 

Lagrangian as a operator insertion, governing, e.g., mixing 
with the half-BPS operator                         . Letting the 
classical action be        , the C-Z equation in dimension D 
is                                                                                                        ,

where                           for                       .

From this one learns that                                    so the beta 
function for the                         operator is determined by 
the anomalous dimension        . 

Algebraic Renormalization
Dixon; Howe, Lindstrom & White;
Piguet & Sorella; Hennaux;
Stora; Baulieu & Bossard

S(4) = tr(F4)
S(2)
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(n(4) − 1)β(4) = γ(4)

S(4) = tr(F 4)
γ(4)

µ
∂

∂µ
[S(2) · Γ] = (4−D)[S(2) · Γ] + γ(4)g

2n(4) [S(4) · Γ] + · · ·

n(4) = 4, 2, 1 D = 5, 6, 8



Combining the supersymmetry generator with a commuting 
spinor parameter to make a scalar operator                , the 
expression of SUSY invariance for a D-form density in D-
dimensions is                                   . Combining this with the 
SUSY algebra                                 and using the Poincaré 
Lemma, one finds                                                                .

Hence, one can consider cocycles of the extended 
nilpotent differential                                 acting on formal 
form-sums                                             .

The supersymmetry Ward identities then imply that the 
whole cocycle must be renormalized in a coherent way. In 
order for an operator like        to mix with the classical 
action       , their cocycles need to have the same structure.

Q = ε̄Q

Q LD +dLD−1 = 0

Q 2 =−i(ε̄γµε)∂µ

ii(ε̄γε)LD +S(Q )|ΣLD−1 +dLD−2 = 0

d +S(Q )|Σ + ii(ε̄γε)

LD +LD−1 +LD−2 + · · ·

S(4)

S(2)
20



The construction of supersymmetric invariants is 
isomorphic to the construction of cohomologically 
nontrivial closed forms in superspace:
                          is invariant (where     is a pull-back to the 

“body” subspace M0) if       is a closed form in 
superspace, and is nonvanishing if       is nontrivial.

Revisit the BRST formalism, but now include all gauge 
symmetries (in particular including spatial 

diffeomorphisms) in the nilpotent BRST operator s. The 
invariance condition for        is                                     where      
is the usual bosonic exterior derivative. Since              and s 
anticommutes with     , one obtains                                           .                                 

Ectoplasm
Gates, Grisaru, Knut-Whelau, & Siegel
Berkovits and Howe
Bossard, Howe & KSS
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LD

LD

LD d0

s2 = 0

I =
∫

M0
σ∗LD σ∗

d0

sLD + d0LD−1 = 0

sLD−1 + d0LD−2 = 0



So the cohomological problem reappears in BRST guise, 
but with the commuting spinor     replaced by the 
commuting supersymmetry ghost. One needs to study 
the cohomology of the nilpotent operator                     , 

whose cochains                are (D-q) forms with ghost 

number q, i.e.(D-q) forms with q spinor indices. The spinor 
indices are totally symmetric since the supersymmetry 
ghost is commuting.

For gauge-invariant supersymmetric integrands, this 
establishes an isomorphism between the cohomology of 
closed forms in superspace (aka “ectoplasm”) and the 
constuction of BRST invariant counterterms.

δ = s + d0

LD−q,q

ε

22



Flat superspace has a standard basis of invariant 1-forms

dual to which are the superspace covariant derivatives

There is a natural bi-grading of superspace forms into even 
and odd parts:

Correspondingly, the flat superspace exterior derivative 
splits into three parts with bi-gradings (1,0), (0,1) & (-1,2):

where for a (p,q) form in flat superspace, one has

where for a (p,q) form in flat superspace, one has

Superspace cohomology

bosonic der. fermionic der. torsion
d = d0(1, 0) + d1(0, 1) + t0(−1, 2)

d0 ↔ ∂µ d1 ↔ Dα

23

Bonora, Pasti & Tonin

Ea = dxa − i

2
dθα(Γa)αβθβ

Eα = dθα

Ωn = ⊕n=p+qΩp,q

(toω)a2···apβ1···βq+2 ∼ (Γa1)(β1β2ωa1···apβ3···βq+2)



The nilpotence of the total exterior derivative d implies the 
relations

Then, since                 , the lowest dimension nonvanishing 
cochain (or “generator”)              must satisfy                          , 

so               belongs to the t0 cohomology group               . 

Starting with the t0 cohomology groups         , one then 
defines a spinorial exterior derivative

by                      , where the [ ] brackets denote Ht classes. 

24

t20 = 0
t0d1 + d1t0 = 0

d2
1 + t0d0 + d0t0 = 0

LD−q,q

dLD = 0

t0LD−q,q = 0

LD−q,q HD−q,q
t

Hp,q
t

ds : Hp,q
t → Hp,q+1

t

ds[ω] = [d1ω]



One finds that ds is nilpotent,             , and so one can 
define spinorial cohomology groups                                 .

This formalism gives a way to reformulate the algebraic 
renormalization cohomology in terms of spinorial 
cohomology. The lowest dimension cochain, or 

generator, of a counterterm’s superform will be ds closed, 
i.e. it must be an element of                .

Solving                             then allows one to solve for all 
the higher components of         in terms of              . 

Hp,q
s = Hds(H

p,q
t )

The groups            give multi pure spinors.H0,q
s
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HD−q,q
s

ds[LD−q,q] = 0

LD LD−q,q

Cederwall, Gran, Nilsson & Tsimpis
Howe & Tsimpis

d2
s = 0



To see how this formalism works, consider N=1 
supersymmetry in D=10. Corresponding to the κ 
symmetries of strings and 5-branes, we have the D=10 
Gamma matrix identities                                             .

The second of these is relevant to the construction of 

d-closed forms in D=10. One may have a generator

where                       . The simplest example of such a 

form corresponds to a full superspace integral over S:

where                   is constructed from the D=10 Gamma 
matrices; it is totally symmetric in          and totally 
antisymmetric in              .

L5,5 = Γ5,2M0,3

ds[M0,3] = 0

Tαβγ,δ1···δ5

αβγ

δ1 · · · δ5 26

t0Γ1,2 = 0 t0Γ5,2 = 0

Mαβγ = Tαβγ,δ1···δ5(D
11)δ1···δ5S

Berkovits & Howe



Under dimensional reduction, closed D forms reduce to 

closed (D-1) forms, so one obtains directly the sequence 
of cocycles corresponding to non-BPS invariants in  
4<D<10 dimensions, with generators                                     . 

Now consider the cocycle of the D=10 SYM Lagrangian 
itself. This is an example of a Chern-Simons form, based 
on the closed 11-form                          .   In standard CS 
fashion, this can be written as                     where       is a 
potential form in D=10, but it also has the property that it 
can be written as                      where         is gauge invariant; 
its lowest component is         .Thus,                  is closed and 
so can be used to construct an integrated invariant.                 

LD−5,5 ∼ ΓD−5,2M0,3

W11 = Γ5,2trF 2

W11 = dK10 K10

W11 = dZ10 Z10

K10 − Z10K8,2
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The 10-form         can be taken to be              where       is 
the Chern-Simons 3-form,                        .

One finds that the lowest dimension cochain in the D=10 

Lagrangian cocycle has structure                                , i.e. it 

is of the same structure as that for the a full superspace 
integral counterterm.

Consequently, full superspace integral cocycles have 
the same structure as that of the Lagrangian cocycle 
and thus are not subject to a nonrenormalization 
theorem.   

Z10 Γ5,2Q3 Q3

dQ3 = trF 2

28

L5,5 = Γ5,2Q0,3



An example of a candidate counterterm which is 
allowed by this analysis is the full-superspace integral 
of the Konishi operator                      . This is relevant to 

the single-trace divergences in L=2, D=7 max SYM. 
When evaluated on-shell, this full-superspace 
expression integrates to zero in the abelian case, but 
becomes a combination of                    and               in the 
non-abelian case.  

tr(WrWr)

tr(∂2F 4) tr(F 5)
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Examples of operators that are ruled out by the 
ectoplasm/algebraic renormalization analysis are any 
half-BPS counterterms, such as the               or                     
counterterms. In  D dimensions, the generator 
component of such a 1/2 BPS cocycle is an (0,D) 
form of dimension 8-D/2. Since the structure of this 
cocycle is different from than that of the Lagrangian, 

the corresponding 1/2 BPS counterterm is illegal.

(tr(F 2))2tr(F 4)
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Double-trace SYM non-renormalization
Similar analysis of the D=7                                 L=2 double-
trace candidate shows that its lowest cocycle components 
may be removed by the addition of exact terms, consistent 
with the D=7 SU(2) R-symmetry, thus leaving a (2,5) 
lowest dimension form like that of the classical 

Lagrangian. Thus, this structure is not protected.

In D=6, however, the situation is different. The R-
symmetry is now SU(2)xSU(2) and one finds that there is 

no trivial term that can be added to shorten the D=6 
double-trace cocycle so as to agree with the D=6 
Lagrangian cocycle structure. Thus, the double-trace L=3 
counterterm is ruled out in D=6. 31

tr(∂F 2)tr(∂F 2)

Bossard, Howe & K.S.S



Current outlook
No mysteries persist in max. SYM: field-theoretic non-
renormalization theorems explain all current calculational 
results.

Providing the D=6, L=3 vs D=5, L=4 max. supergravity 
cases work similarly, the current SG calculational results 
would also be understood purely within field theory.

In  D=5 max. SYM, the L=6 double-trace counterterm 
should similarly be ruled out, and in D=4 max. SG, the 
L=5 and L=6 counterterms should also be illegal. So the 
first allowed D=4 max. SG counterterms would be full-
superspace integrals at L=7.

32
Rôle of duality? E7 ->L=8?


